On Route to Secure Sensor Networks

Embedded Encryption

Johan Dams
jd@puv.fi

I Why ?

* Encrypting data stream in sensitive
I environments

 Both for sensor networks and embedded
systems

- Healthcare: remote patient monitoring
- Security applications

I How ?

I * Encryption methods are very intensive on

memory and computing power
- Lots of mathematical operations going on
— On really big numbers
 Small embedded systems and sensor nodes
very limited
- Small amounts of memory
- 8-bit / 16-bit, limited clock speed

- Often Battery Powered
* Energy concerns

I Types of Encryption

- Both parties need to have access to the key
before communication
- Same key for encryption and decryption

I Symmetric Key Encryption

* For embedded systems and sensor networks

in particular:

- not useful
* Adding and deleting nodes 'on the fly' would be highly
impractical
e Large number of keys need to be stored on each chip
(see figure next slide)

+ 4+
{:::> - > +
r <KL + ry
4 +
+| + |+
+ | J %
+ <+

* Maintaining unique symmetric keys for each
communicating pair of entities would require the
management of: N x (N —-1) / 2

* Thus 1000 users = 499,500 keys

 Way around this? See later...

I * Asymmetric Key Cryptography (Public Key)
- Private key kept secret
— Public key can be freely distributed
— Decryption key is not be deducible from the
encryption key
* Advantages
- Simplifies key exchange enormously
— Smaller number of keys (see next slide)
- In sensor networks, nodes could be added or
removed without key changes on other nodes

* Disadvantages
- Mathematical operations are more complex

+ + + 4

* N = Number of Key Pairs
* Thus: 1000 nodes = 1000 key pairs

I * What can be done: Hybrid Crypto-system
- Use asymmetric crypto to provide a common key
to all nodes
I - After that, use simpler and less intensive math
using this symmetric key

e Disadvantage

- All host use the same key

* Unacceptable in security applications
- e.g., wireless sensor network for security applications:
If one node is compromised, the entire network cannot be
trusted anymore

- Lack of authentication methods
 Distinct feature of asymmetric crypto systems

- Messy and difficult to manage

I What to do ?

- Symmetric:
* Easy mathematically

e But:
- How to distribute the keys?

- Asymmetric
* Easy Key Distribution
e But:
- Mathematically heavy

* Other problem not discussed before:
- Key length!
* The size of keys make it inefficient on limited
hardware

I * Seems no good solution possible

I Interesting though...

 Asymmetric Encryption works like this:
I - There are two operations

* Forward: Easy

sing Difficulty

* Inverse: Hard
- e.g., RSA =
* Two large prime numbers: E—romiopenter - - pesposier]
- 65731 and 83497 (still small for real use, normally 200 digits)
- Easy operation: 65731 x 83497 = 5488341307
- Hard operation: Given 5488341307, find the 2 primes that were
multiplied
» Keys are functions of the product and of the primes
- Operations we wish to be easy require performing the relatively easy

forward function; multiplication.
- The operations we wish to make difficult - finding the plaintext from the

cipher-text using only the public key - require performing the inverse
operation; solving the factoring problem.

I A Solution

 Elliptic Curve Cryptography (ECC)
I - Public Key => Easy distribution of keys
- Short key sizes possible
- Mathematically still very heavy... But there are
ways to make this work.

I ECC?

e Evolved from Diffie Hellman
I - Diffie Hellman uses a problem known as the
discrete logarithm problem as its central,
asymmetric operation
- The discrete log problem concerns finding a
logarithm of a number within a finite field

arithmetic system
* Prime fields are fields whose sets are prime, that is,
they have a prime number of members.
e Over a prime field, exponentiation turns out to be a
relatively easy operation, while the inverse, computing
the logarithm, is very difficult.

 Diffie-Hellman Method for Key Agreement
I — allows two hosts to create and share a secret
key

- Step 1)
* Both sides need to get the parameters
- Prime number 'p' > 2
- Base 'g', integer < 'p'
* These can be hard-coded, or fetched from a server

- Step 2)
* The hosts each secretly generate a private number
called 'x', which is less than "p — 1"
- Step 3)
* The hosts generate the public keys, 'y'. They are
created with the function:
y=09"%%p
- Step 4)
* The two host now exchange the public keys ('y') and
the exchanged numbers are converted into a secret
key, 'Z'
Z=Y"X% p

e 'Z' can now be used as the key for whatever

encryption method is used to transfer

information between the two hosts
- Mathematically, the two hosts have generated
the same value for 'Z'.

Z=(g"X % pP)*X' % p =(g"X' % P)*X % p

* All of these numbers are positive integers

- The discrete logarithm problem, using the values
in the equation above, is simply finding x given
only y, g and p.

I e Back to ECC...
I - also uses a discrete log problem in a finite

group.
- Difference is that ECC defines its group
differently.

* it is the difference in how the group is defined — and
particularly how the mathematical operations within
the group are defined — that gives ECC its greater
security for a given key size

 ECC's advantage:

- Its inverse operation gets harder, faster, against
increasing key length than do the inverse
operations in Diffie Hellman and RSA

- This means ECC offers greater security bit-for-bit

ECC key size RSA kevsize Key size ratio

(bits) (bits)

163 1024 1/6
256 3072 1/12
384 7680 1/20
512 15360 1/30

Table 1. Equivalent key sizes for ECC and RSA, supplied by NIST to ANSI X9F]

I How ECC works

dimensional x,y Cartesian coordinate system
by an equation of the form:
y 2 +y = X3 - x"2

I * An elliptic curve is defined in a standard, two

* The elliptic curve is used to define the
I members of the set over which the group is
calculated, as well as the operations between
them, which define how math works in the

group
* |t goes like this:
- iImagine a graph labeled along both axes with the
numbers of a large prime field
* a square graph, p x p in size, where p is a very large
prime number
* This is hard to imagine, so use e.g., 17 as the prime

- Fp is the field of integers modulo p, and consists
of all the integers from 0 to p-1
- So you'd be looking at a graph 17x17 (example)

units in size.

* |f you define an elliptic curve so that there are points
(X, y) on the curve that satisfy the condition that both x
and y are members of the prime field

* you have implicitly created a group from the set of

integer points on the curve
- It is a subset of all the points in the p by p matrix created
when you drew the graph, specifically the ones the curve
passes directly through

* Note:
I - unlike the groups used in Diffie Hellman, the
elements of the set aren't integers, but points
- It contains a set of elements (points, in this
case), and when you add one point to another,
or subtract one from another, there are rules that
say what point in the set you wind up at when

you do so.
e Just as for the integers in the groups used in Diffie
Hellman.

I The rules of the game

- The dominant operation in ECC cryptographic

— critical operation which is in itself fairly simple,
but whose inverse is very difficult

— Point multiplication is simply calculating kP,
where K is an integer and P is a point on the
elliptic curve defined in the prime field

* This is done by a series of point additions
and doublings

I e Point Multiplication

yr'2=x"3+ax+b

I « Algebraically, the result of adding points A(x,, y,)
and B(x_,y,) is G(x_, y_) such that
- X, =8"2-X =X, Y. ="y, +8(X, —X)
- where s = (y, —y,)/(x, — X_) is the slope of the line

through A and B.
- When A equals B, the line through A and B
degenerates to the tangent at A and s = (3x,"2 + a)/2y,.

- The result of adding A and -A is defined to be a special
point called the point at infinity.

Faint multiplication & = kP

Repeated point 2ddition and
douhling 92 = 202(P1 + P

Fublic key oparation
Gl) = kP ()]

- = Fublic key

- F = Base pomnt {curve parameter)
- k= Privatz key

- n=Crderof P

Elliptic curee discrete logarithm
Given public key kP, find private
key k

Best known attacl: Pollard's rho
rmethod with running time.

(1P 2 rja(1 /22

R=P+0

I * Elliptic curve groups used in cryptography

are defined over two Kinds of fields:

- GF(p), where p is a prime,

- and GF(2"m) where each element is a binary
polynomial of degree m (that can be represented
as an m-bit string sinc coefficient is either 0 or

1);

* Third type: Optimal Extension Fields
I - Choose p of the form 2*n +/- ¢, for n; c arbitrary
positive integers, where

e log (c) <=[2n]

* |n this case, one chooses p of appropriate size to use
the multiply instructions available on the target
microcontroller

* |[n addition, m is chosen so that an irreducible
binomial P(x) = x*m - w exists, w in GF(p).

- Generating good curves over OEF's ?

e Schoof's algorithm

I A practical Implementation

I e Goal: To provide an ECC system that can be

implemented on 8-bit microcontrollers
- Here 8051

* Very common

* quite high-speed available
- e.g. Dallas Semiconductor DS80C400

* Easily available for testing
e Secondary goal: Scalable for higher-end
Controllers (not yet finished and tested, but
should be no problem)

I The field
* implementation is based on the use of the
I Optimal Extension Fields GF((2"8 — 17)*17)
- Why?
e 28 — 17 = 239, largest prime able to fir into an 8-bit
register

- For 16-bit micros : GF((2"13 — 1)*13)

I Implementing

I e Optimisation — Some algorithms

- Extension field multiplication is the most costly
basic arithmetic function in OEFs

- For a given extension field of order n, n*2
subfield multiplications are required to multiply
two values using traditional polynomial
multiplication

* Demonstration:
I - Given two degree-1 polynomials, A(x) and B(x),
we can demonstrate:
* A(x) =alx + a0
* B(x) =b1x + b0
* we must calculate the product of each possible pair of

coefficients.
- DO = a0b0
- D1 = a0b1
- D2 =aib0
- D3 = alb1i

* Now we can calculate the product C(x) = A(x) . B(x)
as:
- C(x) = D3x*2 + (D2 + D1)x + DO

* We can do this faster: Karatsuba Method
I - begins by taking the same two polynomials, and

calculating the following three products:
e EO = al0b0
e E1 =albt
e E2 =(a0 + a1)(b0 + b1)
- These are then used to assemble the result
C(x) = A(x) . B(x):
e C(x)=E1x"2 + (E2- E1 - EO)x + EO

 Comparison
I — The traditional method requires four
multiplications and one addition
- while the Karatsuba method requires three
multiplications and four additions.

- Thus we have traded a single multiplication for
three additions. If the cost to multiply on the
target platform is as least three times the cost to
add, then the method is effective.

- Not on 8051, but on several 16 bit and more
CPU's

* Point Multiplication
I - the primary operation in an elliptic curve
cryptosystem is point multiplication
- C = kP. For large k, computing kP is costly

- ordinary integer exponentiation can be adapted
to this setting
- The most basic of these algorithms is the binary-

double-and-add algorithm
 On average 1,5 log, (k)

I * Other optimisations are possible

- e.g. Somehow using de Roolj
e Very useful with digital signatures, as the point can be
known ahead of time
* Use on smartcard

- Needs more work...
* |[toh-Tsujii inversion
— reduction of the extension field inversion to a

subfield inversion
 subfield inverse can be calculated by efficient means,
such as table-lookup or the Euclidean algorithm,
given a small order of the subfield.

Some numbers

- Field appr. Field Order # Cycles for
Multiply

- GF(2"135) 2135 19,000

- GF((2"8)*7) 2136 /7,000

- GF((2"8 — 17)*M7) 2134 5,000

- Generic binary fields offer performance which
lags behind

- certain composite fields have been shown to
have cryptographic weaknesses

— OEF best for our application

I Conclusion

* Implementing ECCs on the 8051 is a
challenging task... But it can be done!

» Standard 8051, 256 bytes RAM, ... Tight fit.

- Better 8051 implementations will yield better
results

I * A |lot of work still needs to be done

I * Each curve point in our group occupies 34

bytes of RAM

- 17 bytes each for the X and Y coordinates.

- To make the system as fast as possible, the
most intensive field operations, such as
multiplication, squaring, and inversion, operate
on fixed memory addresses in the faster, lower
half of RAM.

— During a group operation, the upper 128 bytes
are divided into three sections for the two input

and one output curve points
* the available lower half of RAM is used as a working
area for the fieeld arithmetic algorithms.
* A total of four 17-byte coordinate locations are used

- Finally, six bytes are used to keep track of the
curve points, storing the locations of each curve
point in the upper RAM

- Using these pointers, we can optimize algorithms
that must repeatedly call the group operation,
often using the output of the previous step as an
iInput to the next step.

- Instead of copying a resulting curve point from

the output location to an input location,

e which involves using pointers to move 34 bytes
around in upper RAM,

- we can simply change the pointer values and

effectively reverse the inputs and outputs of the
group operation

I * Code size to implement

- Approx. 16KB
* Can be optimised

* Some statistics (12Mhz Intel 8051) (approx.)

— Multiplication
- Squaring

— Addition

- |nversion

- Scalar Mult.

t(uS)
C(x) = A(X)B(x) 5300
C(x) = A(x)"2 3300
C(x) = A(X) + B(x) 300
C(x) = A(x)"-1 25000
C(x) = sA(X) 700

The End

