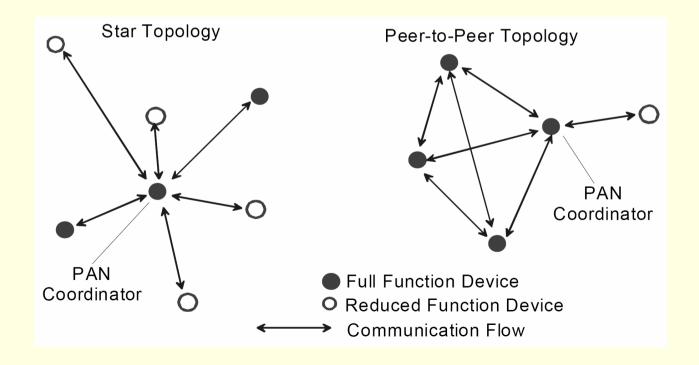
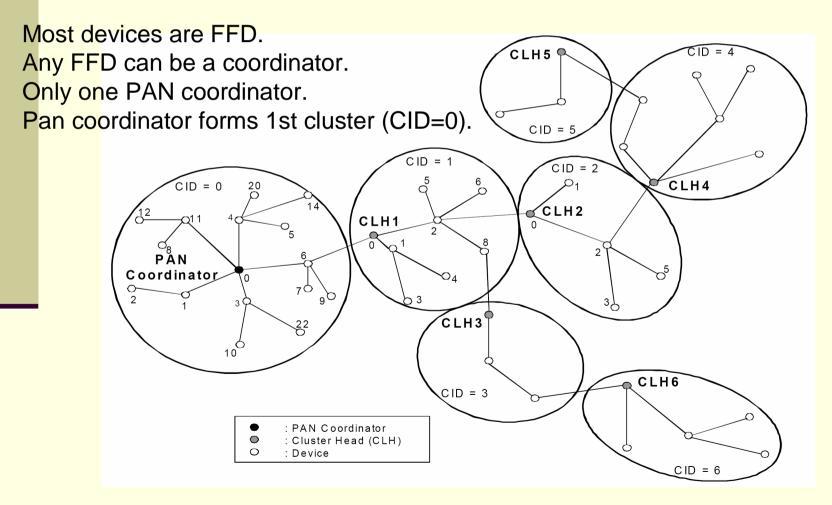
An Introduction to IEEE 802.15.4 (ZigBee)

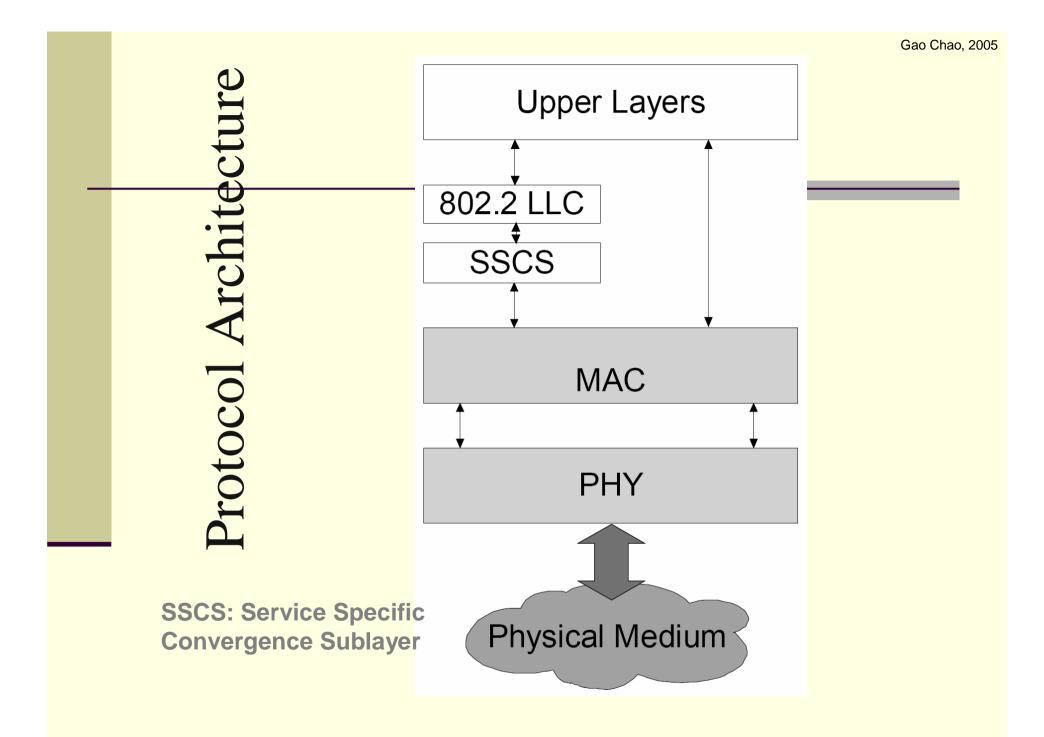
Gao Chao Vaasa Polytechnic Vaasa, Finland


General Description

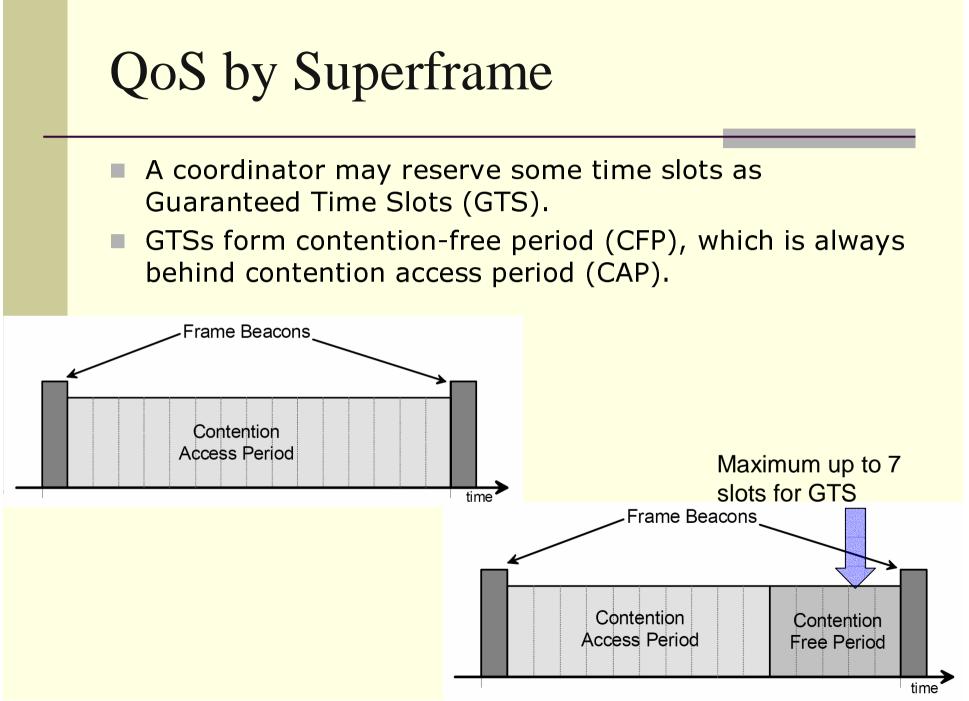
- Over-the-air data rates of 250 kb/s, 40 kb/s, and 20 kb/s
- Star or peer-to-peer operation
- Allocated 16 bit short or 64 bit extended addresses
- Allocation of guaranteed time slots (GTSs)
- Carrier Sense Multiple Access with Collision Avoidance (CSMA-CA) channel access
- Fully acknowledged protocol for transfer reliability
- Low power consumption
- Energy detection (ED)
- Link quality indication (LQI)
- 16 channels in the 2450 MHz band, 10 channels in the 915 MHz band, and 1 channel in the 868 MHz band

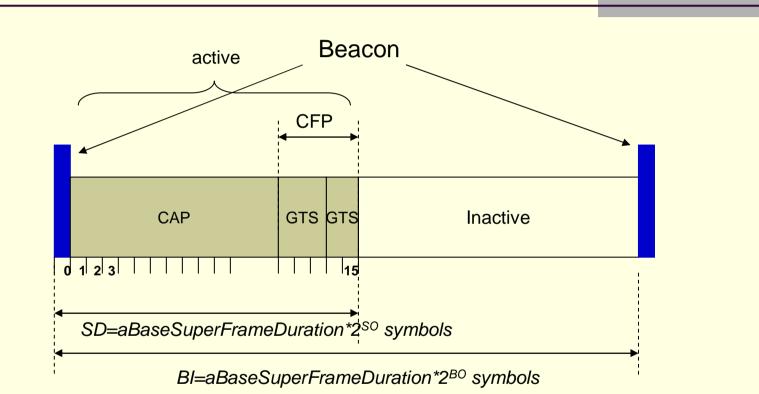
Aimed to a Low-Rate Wireless Personal Area Network (LR-WPAN) Standard.


Network Topologies


- Star: a FFD (Full-Function Device) works as coordinator, other FFD and RFD (Reduced Function Device) in range as slaves.
- Peer-to-Peer: ad hoc network

Peer-to-Peer Formation


A cluster-tree topology

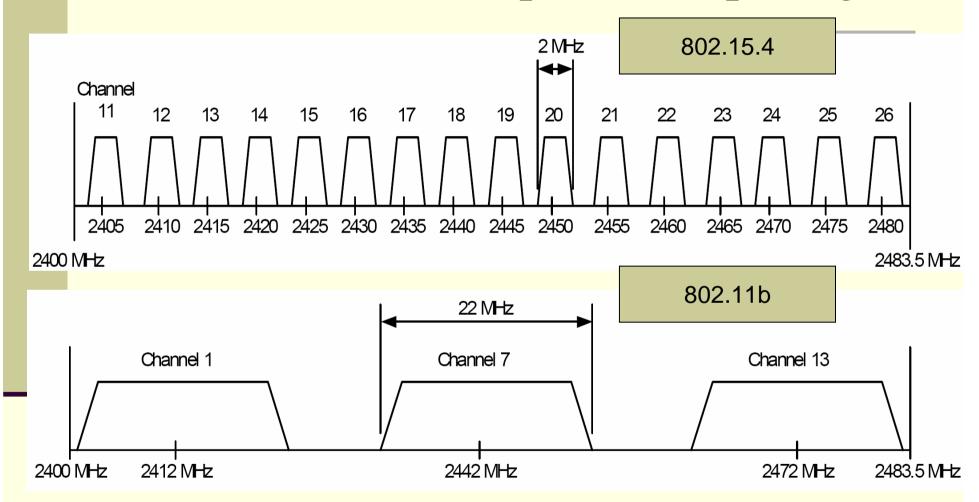


Synchronization by Superframe

- An optional choice for the network coordinator
- A superframe is bounded by beacons sent by a coordinator.
- Between two beacons the time is divided into 15 equally sized slots.
- All the attached devices will compete the channel using a slotted CSMA/CA method.
- All transmissions shall be terminated before the next beacon.

Superframe with Energy Saving

SO and BO are defined as MAC attributes, 0<=SO<=BO<=14


Physical Layer: Frequency & Channels

- A total of 27 channels, numbered 0 to 26, are available across the three frequency bands. 16 channels are available in the 2450 MHz band, 10 in the 915 MHz band, and 1 in the 868 MHz band.
- The center frequency of these channels is defined as follows:

$$F_c = 868.3$$
 $F_c = 906 + 2 (k - 1)$ $F_c = 2405 + 5 (k - 11)$

РНУ	Frequency	Spreading	parameters	Data parameters					
(MHz)	band (MHz)	Chip rate (kchip/s)	Modulation	Bit rate (kb/s)	Symbol rate (ksymbol/s)	Symbols			
868/915	868–868.6 300 BF		BPSK	20	20	Binary			
	902–928	600	BPSK	40	40	Binary			
2450	2400-2483.5	2000	O-QPSK	250	62.5	16-ary Orthogonal			

Channlization and Spectrum Spacing

PHY Frame format

- Preamble: 32 zeros to obtain synchronization
- The start of frame delimiter (SFD): (11100101)

	Bytes: 4	Byte	es: 1		Byte	s: 1	Bytes: variable			
	Preamble Start of		of frame Frame length er (SFD) (7 bits)			Reserved (1 bit)	Payload			
	SHR				PH	R	PHY payload			
				4	7	1				
			Fra	me leng	th values	Payloa	d			
SHR	: Synchronization Heade	۱.	0–4			Reserved				
	Physical Layer Frame		5			MPDU (Acknowle	edgment)			
			6–7			Reserved				
			8 to <i>aM</i>	axPHYP	PacketSize	MPDU				

PHY Primitives

- 3 primitives are defined between physical layer and MAC layer:
 - PD-DATA.request
 - PD-DATA.confrim
 - PD-DATA.indication
- In PD-DATA.indication a ppduLinkQuality indicator is defined as one byte (0-255), which is measured when the PPDU is received.

More Physical Layer Primitives are not discussed here.

PHY Constants

Constant	Description	Value
aMaxPHYPacketSize	The maximum PSDU size (in octets) the PHY shall be able to receive.	127
aTurnaroundTime	RX-to-TX or TX-to-RX maximum turnaround time (see 6.7.1 and 6.7.2)	12 symbol periods

PHY PIB Attributes

Attribute	Identifier	Туре	Range	Description
phyCurrentChannel	0 x 00	Integer	0–26	The RF channel to use for all following transmissions and receptions (see 6.1.2).
phyChannelsSupported	0 x 01	Bitmap	See description	The 5 most significant bits (MSBs) (b_{27} ,, b_{31}) of <i>phyChannelsSupported</i> shall be reserved and set to 0, and the 27 LSBs (b_0 , b_1 ,, b_{26}) shall indicate the status (1=available, 0=unavailable) for each of the 27 valid channels (b_k shall indicate the status of channel <i>k</i> as in 6.1.2).
phyTransmitPower	0 x 02	Bitmap	0 x 00–0xbf	The 2 MSBs represent the tolerance on the transmit power: $00 = \pm 1 \text{ dB}$ $01 = \pm 3 \text{ dB}$ $10 = \pm 6 \text{ dB}$ The 6 LSBs represent a signed integer in twos-complement format, correspond- ing to the nominal transmit power of the device in decibels relative to 1 mW. The lowest value of <i>phyTransmitPower</i> shall be interpreted as less than or equal to -32 dBm.
phyCCAMode	0 x 03	Integer	1–3	The CCA mode (see 6.7.9).

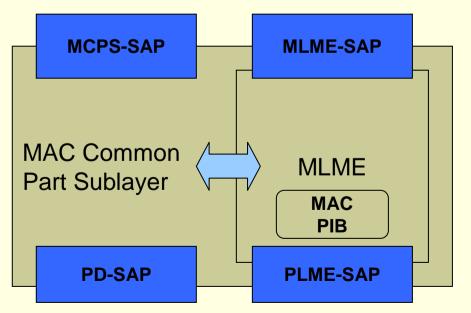
PIB: PAN Information Base

Coding and Modulation at 2.4G

- Every 4 bits are mapped into one symbol and encoded into one of 16 32-bit quasi-orthogonal PN codes.
- Modulation is O-QPSK

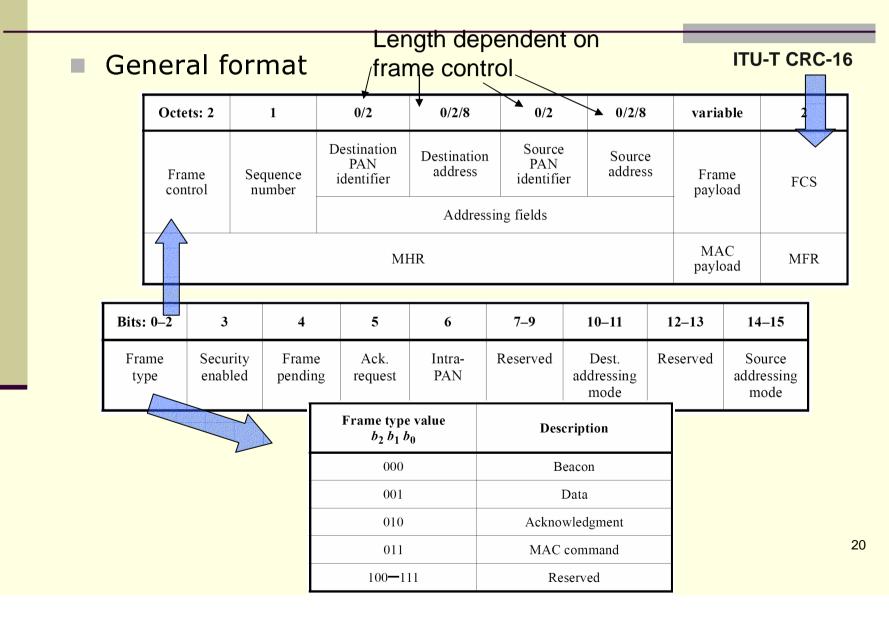
Data symbol (decimal)	Data symbol (binary) (b_0, b_1, b_2, b_3)	Chip values (c ₀ c ₁ c ₃₀ c ₃₁)
0	0 0 0 0	1 1 0 1 1 0 0 1 1 1 0 0 0 0 1 1 0 1 0 1
1	1000	1 1 1 0 1 1 0 1 1 0 0 1 1 1 0 0 0 0 1 1 0 1 0 1 0 0 0 1 0 0 0 1 0
2	0100	00101110110110011100001101010100010
3	1100	001000101110110110011100000110101
4	0010	01010010001011101101100111000011
5	1010	00110101001000101110110110011100
6	0110	1 1 0 0 0 0 1 1 0 1 0 1 0 0 1 0 0 1 0 1
7	1110	10011100001101010001001011101101
8	0001	10001100100101100000011101111011
9	1001	10111000110010010110000001110111
10	0101	01111011100011001001010000000111
11	1 1 0 1	0111011110111000110010010100000
12	0 0 1 1	00000111011110111000110010010110
13	1011	01100000011101111011100011001001
14	0111	10010110000001110111101110001100
15	1111	1 1 0 0 1 0 0 1 0 1 1 0 0 0 0 0 0 1 1 1 0 1 1 1 0 1 1 1 0 0 0

Pulse Shaping


The half-sine pulse shape used to represent each baseband chip

$$p(t) = \begin{cases} \sin\left(\pi \frac{t}{2T_c}\right), & 0 \le t \le 2T_c \\ 0, & otherwise \end{cases}$$

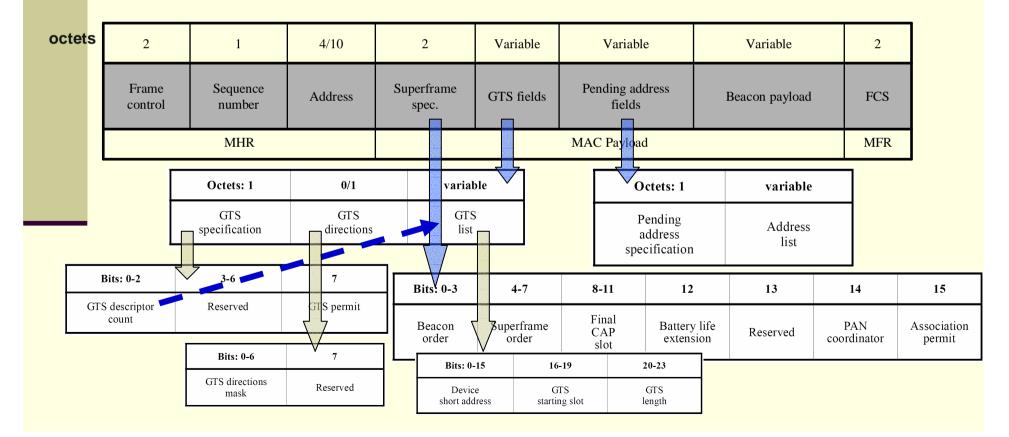
MAC Protocols


MAC Layer

- Supports two types of network topologies: star topology and peer-to-peer topology
- Any full-function device (FFD) can create its own network by becoming a PAN coordinator.
- Reduced-function devices (RFD) are coordinated by a coordinator.

MLME: MAC Layer Management Entity PLME: Physical Layer ... MCPS: MAC Common Part Sublayer

MAC: Frame Format



Frame Types

- MAC layer packet defines 4 different frame types:
 - Beacon frame
 - Data frame
 - Acknowledgement frame
 - MAC command frame

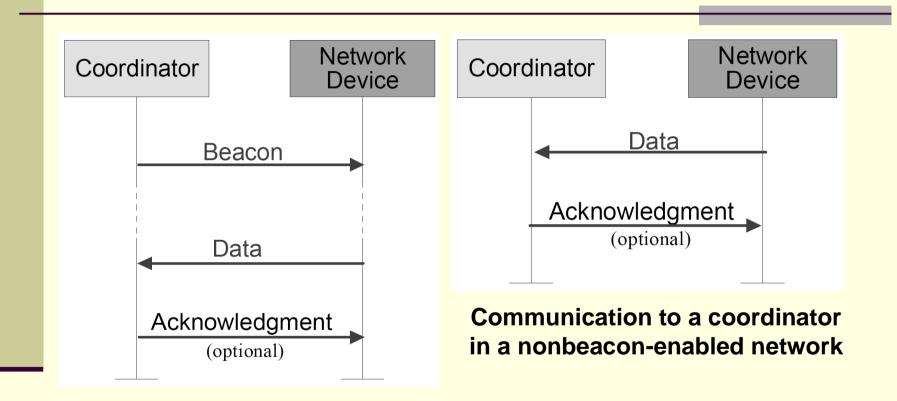
Beacon Frame

- Transmitted by coordinators periodically.
- Offers synchronization to the network.
- To identify the network and its structure.

Data & Ack. Frame

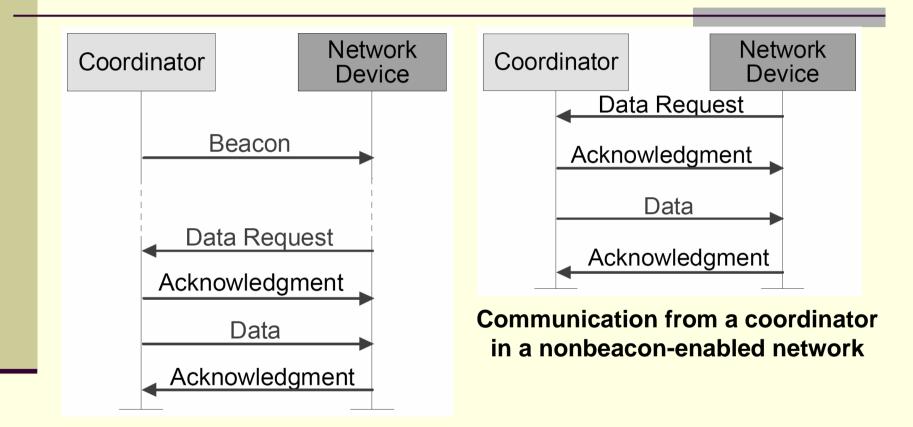
2	1	*	Variable	2
Frame control	Sequence number	Address	Data Payload	FCS
	MHR		MAC Payload	MFR
2	1	1		
I		FCS		
MI	HR	MFR		

Command Frame


Used for communication and negotiation between MAC entities on different devices.

2	1	*		1	Variable	2		
Frame control	Sequence number	Address			Command Payload	FCS		
	ontrol Sequence Address Command Command Payload							
	L I O I Outnot ame control Sequence number Address Command Frame ID Command Payload MHR MAC Payload MAC Payload Command frame identifier 0 x 01 Association request 0 x 01 Association reguest 0 x 02 Association notification 0 x 03 Disassociation notification 0 x 04 Data request 0 x 05 PAN ID conflict notification 0 x 07 Beacon request 0 x 08 Coordinator realignment 0 x 09 GTS request							
			C		ne Command name	R	FD	
				identifier	Command name	Тх	Rx	
				0 x 01	Association request	X		
				0 x 02	Association response		X	
				0 x 03	Disassociation notification	X	X	
	0 x 04		0 x 04	Data request	Х			
			PAN ID conflict notification	Х				
				0 x 06	Orphan notification	X		
				0 x 07	Beacon request			
				0 x 08	Coordinator realignment		X	
				0 x 09	GTS request			
				0 x 0a—0 x ff	Reserved			

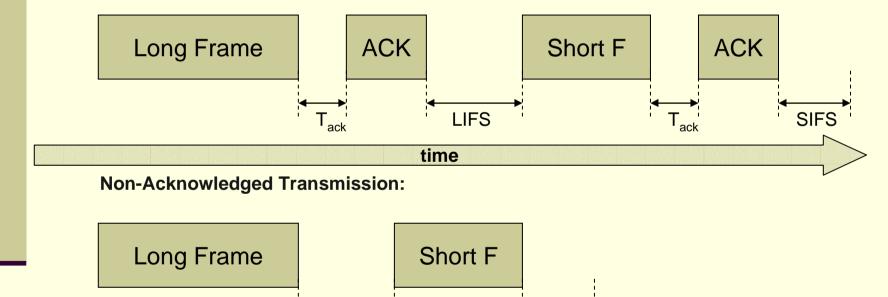
Data Transfer


- Data from a device to a coordinator
- Data from a coordinator to a device
- Data from a device to a device (peer-to-peer)

Device to Coordinator

Communication to a coordinator in a beacon-enabled network

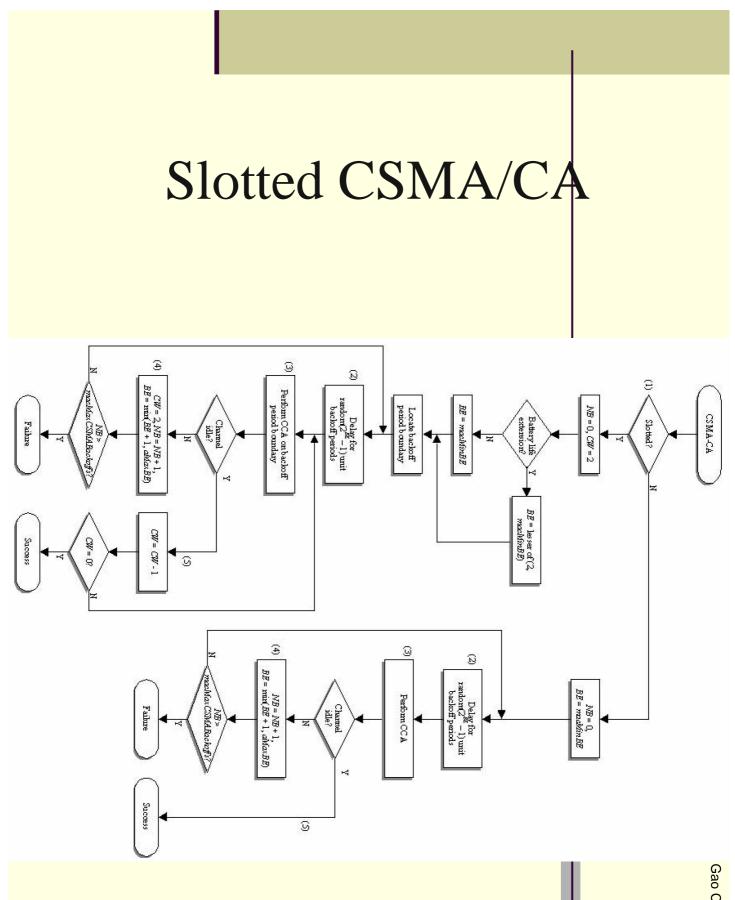
Coordinator to Device



Communication from a coordinator in a beacon-enabled network

MAC: IFS

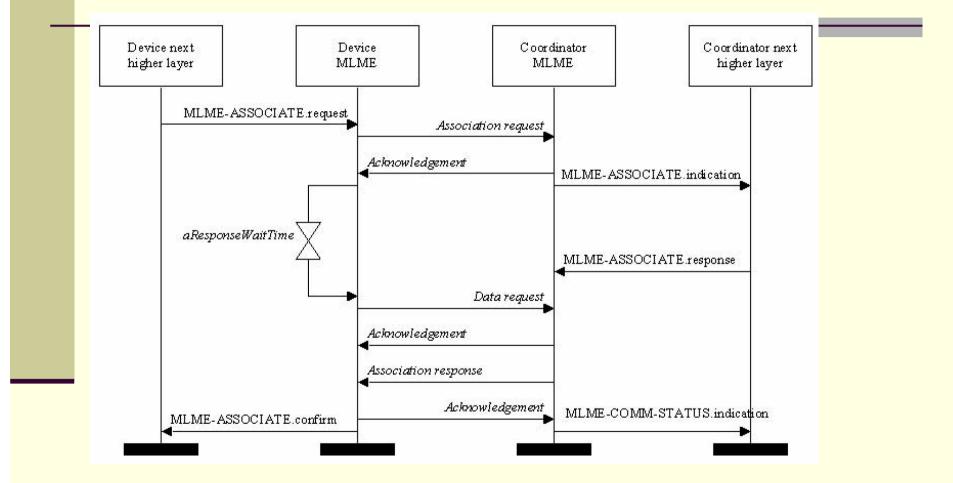
Inter-Frame Space


Acknowledged Transmission:

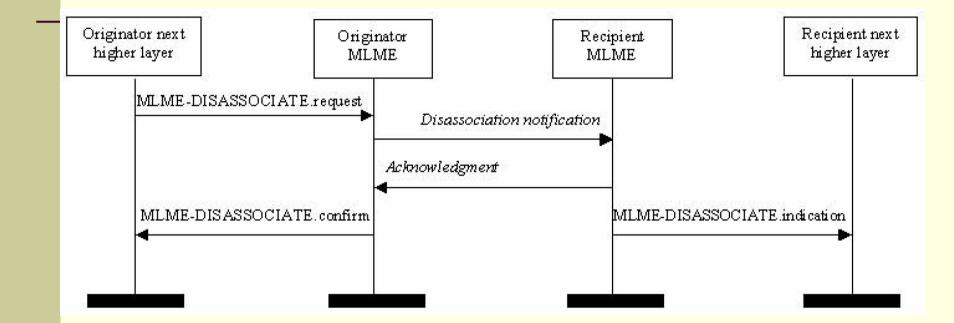
aTurnaroundTime<=T_{ack}<=(aTurnaroundTime+aUnitBackoffPeriod)

LIFS

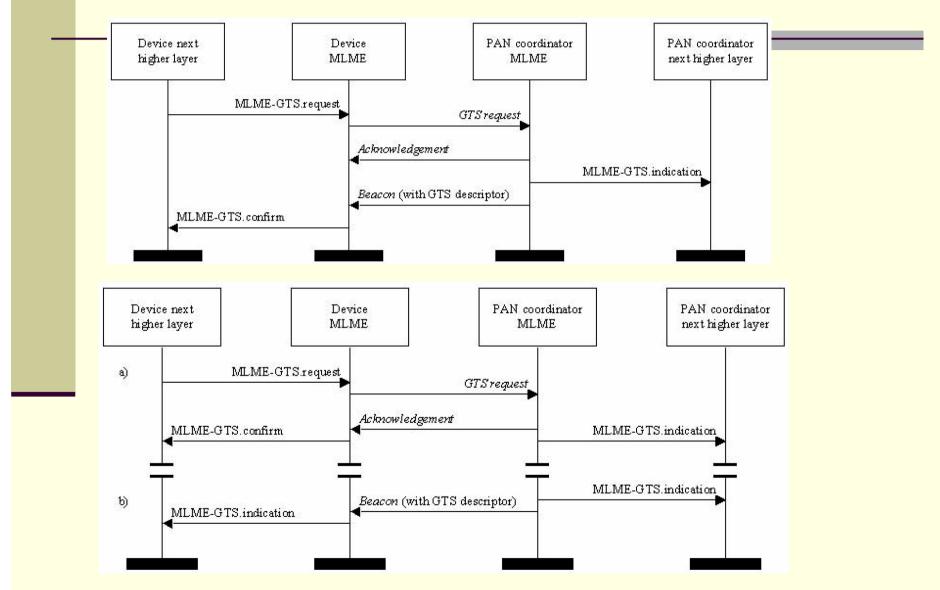
SIFS

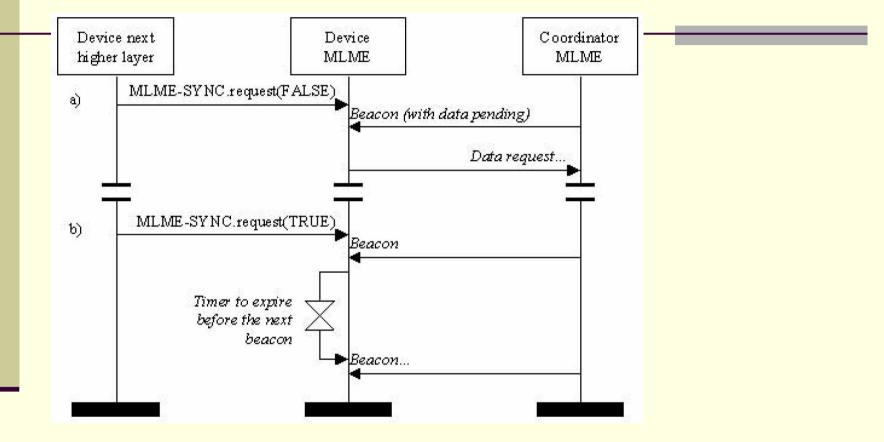


Gao Chao, 2005

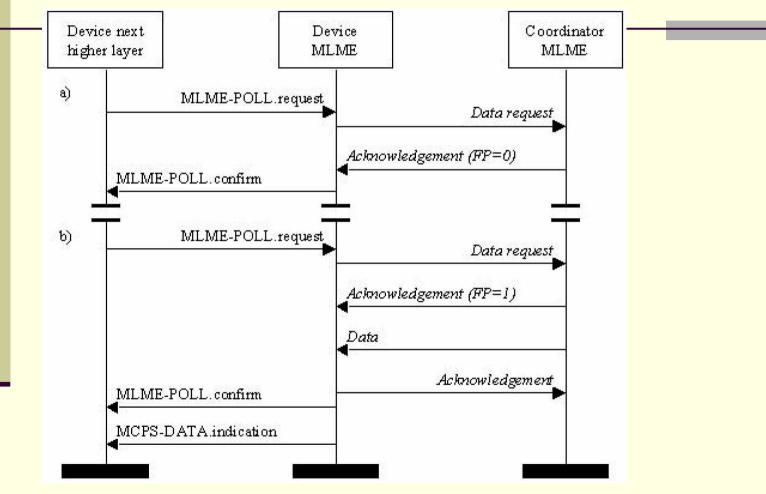

Communication in P2P Network

- In a peer-to-peer PAN, every device may communicate with every other device in its radio sphere of influence.
- In order to do this effectively, the devices wishing to communicate will need to either receive constantly or synchronize with each other.
- In the former case, the device can simply transmit its data using unslotted CSMA-CA.
- In the latter case, other measures need to be taken in order to achieve synchronization.
- Such measures are beyond the scope of this standard.


MAC: Device Association


MAC: Device Disassociation

MAC: GTS Allocation/Deallocation



MAC: Device Synchronization

- a) A single synchronization
- b) Track synchronization

MAC: Polling from Coordinator

- a) No data pending
- b) Has data pending to the device

MAC PIB Constants

aUnitBackoffPeriod	arcesponse wait time	aNumSuperframeSlots	aMinSIFSPeriod	aMinLIFSPeriod	aMinCAPLength	aMaxSIFSFrameSize	aMaxMACFrameSize	aMaxLostBeacons	aMaxFrameRetries	aMaxFrameResponseTime	aMaxFrameOverhead	aGTSDescPersistenceTime	aMaxBeaconPayloadLength	aMaxBeaconOverhead	aMaxBE	aExtendedAddress	a Base Superframe Duration	aBaseSlotDuration	Constant
The number of symbols forming the basic time period used by the CSMA-CA algorithm.	request command to be available following a request command to be available following a request command.	The number of slots contained in any superframe.	The minimum number of symbols forming a SIFS period.	The minimum number of symbols forming a long interframe spacing (LIFS) period.	The minimum number of symbols forming the CAP. This ensures that MAC commands can still be transferred to devices when GTSs are being used. An exception to this minimum shall be allowed for the accommodation of the temporary increase in the beacon frame length needed to perform GTS maintenance (see 7.2.2.1.3).	The maximum size of an MPDU, in octets, that can be followed by a short interframe spacing (SIFS) period.	The maximum number of octets that can be transmitted in the MAC frame payload field.	The number of consecutive lost beacons that will cause the MAC sublayer of a receiving device to declare a loss of synchronization.	The maximum number of retries allowed after a transmission failure.	The maximum number of CAP symbols in a beacon- enabled PAN, or symbols in a nonbeacon-enabled PAN, to wait for a frame intended as a response to a data request frame.	The maximum number of octets added by the MAC sublayer to its payload without security. If security is required on a frame, its secure processing may inflate the frame length so that it is greater than this value. In this case, an error is generated through the appropriate .confirm or MLME-COMM-STATUS.indication primitives.	The number of superframes in which a GTS descriptor exists in the beacon frame of a PAN coordinator.	The maximum size, in octets, of a beacon payload.	The maximum number of octets added by the MAC sublayer to the payload of its beacon frame.	The maximum value of the backoff exponent in the CSMA-CA algorithm.	The 64 bit (IEEE) address assigned to the device.	The number of symbols forming a superframe when the superframe order is equal to 0.	The number of symbols forming a superframe slot when the sumerframe order is equal to 0	Description
20	32 - авахемирег- frameDuration	16	12	40	440	18	aMaxPHYPacketSize – aMaxFrameOverhead	4	υ 	1220	25	4	aMaxPHYPacketSize – aMaxBeaconOverhead	75	5	Device specific	<i>aBaseSlot</i> , <i>Duration</i> * aNumSuperframeSlots	60	Value

Gao Chao, 2005

Elements of ACL Entry Descriptor

Name	Туре	Range	Description	Default
ACLExtendedAddress	IEEE address	Any valid 64 bit device address	The 64 bit IEEE extended address of the device in this ACL entry.	Device specific
ACLShortAddress	Integer	0 x 0000—0 x ffff	The 16 bit short address of the device in this ACL entry. A value of $0 \times fffe$ indicates that the device is using only its 64 bit extended address. A value of $0 \times ffff$ indicates that this value is unknown.	0 x ffff
ACLPANId	Integer	0 x 0000—0 x ffff	The 16 bit PAN identifier of the device in this ACL entry.	Device specific
ACLSecurityMaterial- Length	Integer	0-26	The number of octets contained in <i>ACL-SecurityMaterial</i> .	21
ACLSecurityMaterial	Octet string	Variable	The specific keying material to be used to protect frames between the MAC sublayer and the device indicated by the associated <i>ACLExtendedAddress</i> (see 7.6.1.8).	Empty string
ACLSecuritySuite	Integer	0 x 00–0 x 07	The unique identifier of the security suite to be used to protect communications between the MAC sublayer and the device indicated by the associated <i>ACLExtendedAddress</i> as specified in Table 75.	0 x 00

ACL: Access Control List

Channel Scanning

- All devices shall be capable of performing passive and orphan scans across a specified list of channels.
- In addition, an FFD shall be able to perform ED (Energy Detection) and active scans.
- The next higher layer should submit a scan request containing a list of channels chosen only from the channels specified by phyChannelsSupported.

Channel Scanning: ED Scan

- Allows an FFD to obtain a measure of the peak energy in each requested channel.
- Used by a prospective PAN coordinator to select a channel in which to operate prior to starting a new PAN.
- Shall terminate when either the number of measurements stored equals the implementationspecified maximum or energy has been measured on each of the specified logical channels.

Channel Scanning: Active Channel Scan

- Allows an FFD to locate any coordinator transmitting beacon frames within its POS.
- Used by a prospective PAN coordinator to select a PAN identifier prior to starting a new PAN, or used by a device prior to association.
- A device conducting an active scan sends a *beacon-request* command.
- If a coordinator of a beacon-enabled PAN receives the beacon request command, it shall ignore the command and continue transmitting its beacons as usual.
- If a coordinator of a nonbeacon-enabled PAN receives this command, it shall transmit a single beacon frame using unslotted CSMA-CA.

Channel Scanning: Passive Channel Scan

- Allows a device to locate any coordinator transmitting beacon frames within its POS.
- The beacon request command is not transmitted.
- This type of scan could be used by a device prior to association.

Channel Scanning: Orphan Channel Scan

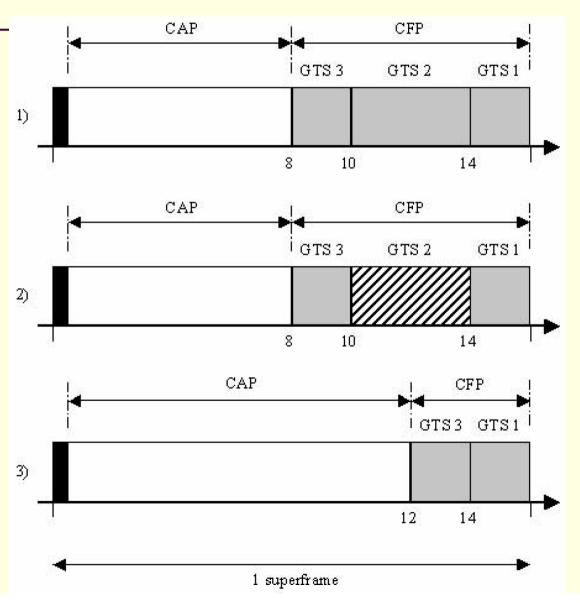
- Allows a device to attempt to relocate its coordinator following a loss of synchronization.
- If a coordinator receives the orphan notification command, it shall search its device list for the device sending the command.
- If the coordinator finds a record of the device, it shall send a coordinator realignment command to the orphaned device.

Synchronization

- Synchronization with beacons
- Synchronization without beacons
 - A device shall be able to poll the coordinator for data at the discretion of the next higher layer.

GTS: Allocation De-allocation Reallocation

GTS: Allocation


- A device is instructed to request the allocation of a new GTS through the MLME-GTS.request primitive.
- The coordinator sends back an ACK after the reception of GTS request command.
- GTSs shall be allocated on a first-come-first-served basis by the PAN coordinator.
- The coordinator sends the GTS descriptor in next beacon to indicate the device when the allocated GTS slot starts, how many, and the direction.
- The transaction of GTS should follow the MAC IFS limit.

GTS: De-allocation

- To request the de-allocation of an existing GTS, the MLME shall send the GTS request command to the PAN coordinator.
- The characteristics type subfield of the GTS characteristics field of the request shall be set to 0.
- This request must be acknowledged.
- On receipt of a beacon frame containing a GTS descriptor corresponding to macShortAddress and a start slot equal to 0, the device shall immediately stop using the GTS.

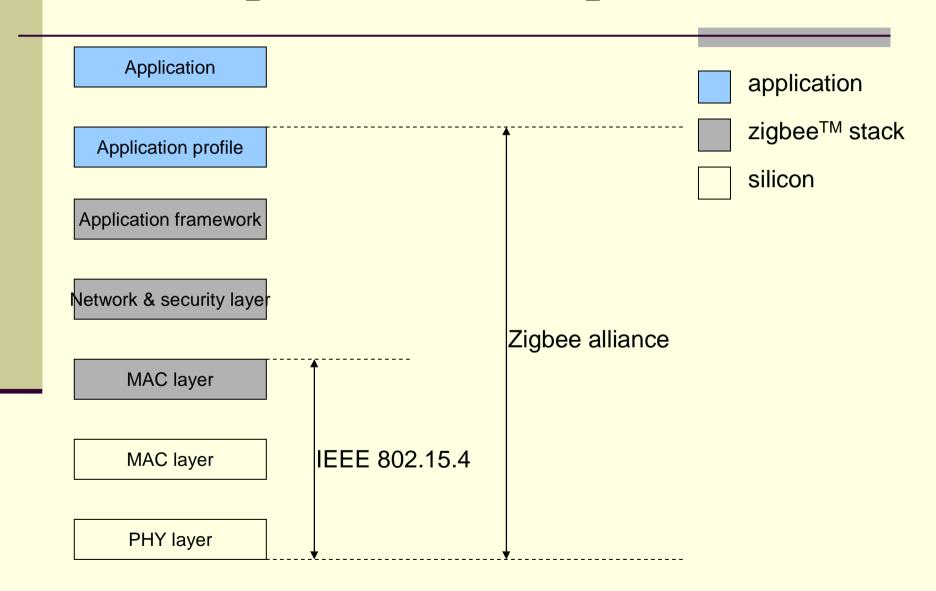
GTS: Reallocation

The PAN coordinator shall ensure that any gaps occurring in the CFP, appearing due to the de-allocation of a GTS, are removed to maximize the length of the CAP.

GTS Expiration

- The PAN coordinator shall attempt to detect when a device has stopped using a GTS using the following rules:
 - For a transmit GTS, the coordinator shall assume that a device is no longer using its GTS if a data frame is not received from the device in the GTS at least every 2*n superframes,
 - For receive GTSs, the coordinator shall assume that a device is no longer using its GTS if an acknowledgment frame is not received from the device at least every 2*n superframes,

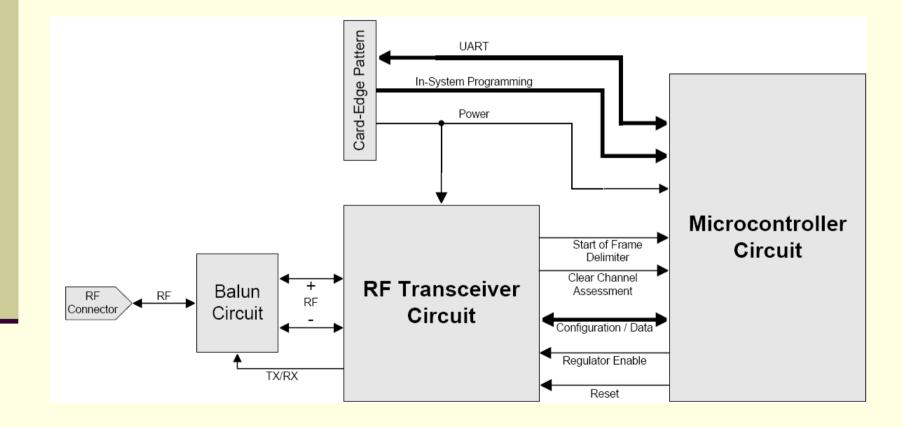
$n = 2^{(8-macBeaconOrder)}$	$0 \le macBeaconOrder \le 8$
n = 1	$9 \le macBeaconOrder \le 14$


Gao Chao, 2005

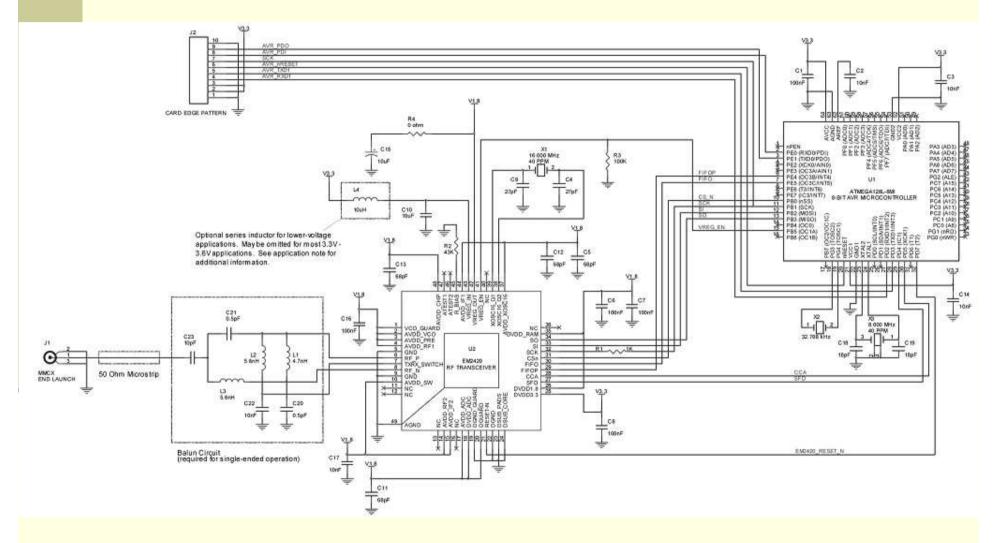
Zigbee Products

- Chipcon offers a development kit for zigbee application.
 - CC2420 Industry leading IEEE 802.15.4/ZigBee RF transceiver
 - CC2430 True System-on-Chip (SoC) solution for ZigBee with integrated 8051 microcontroller
 - ZigBee hardware development kits
 - High performance and robust reference designs
 - IEEE 802.15.4 MAC software free-of-charge

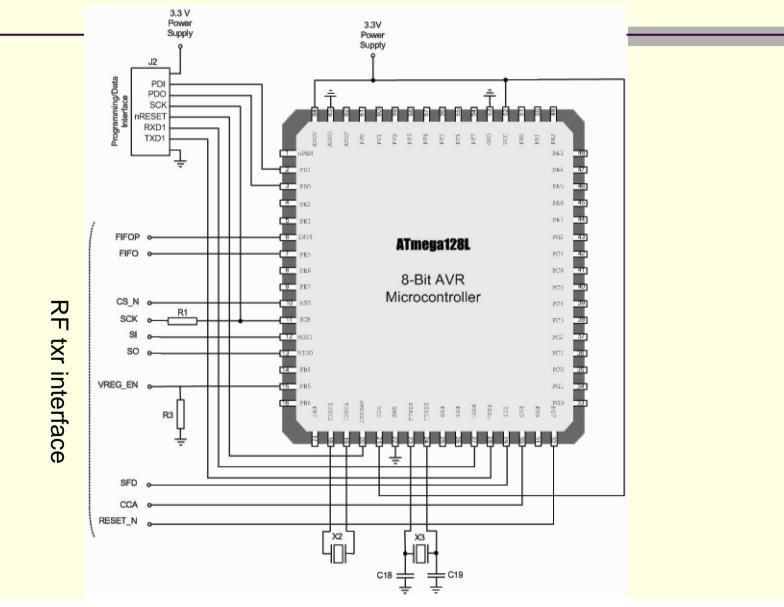
Development Roadmap

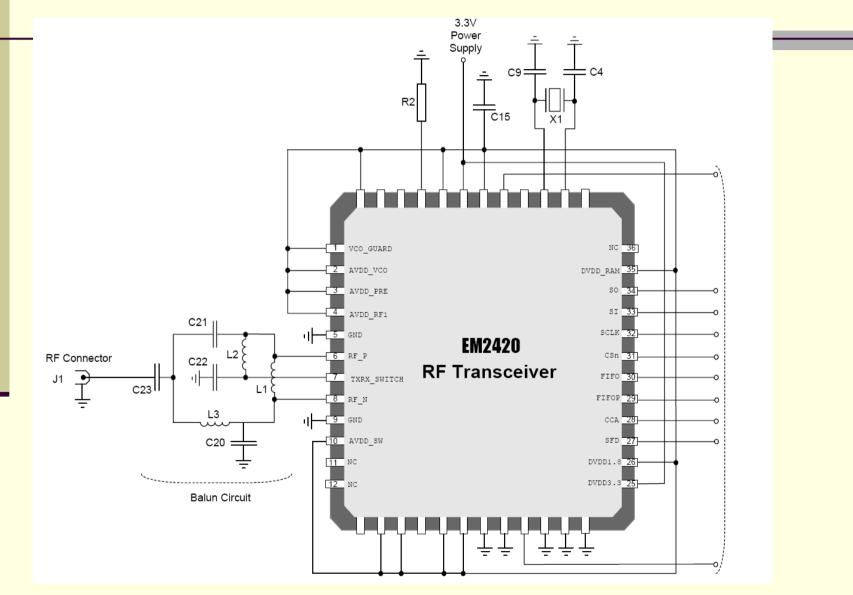


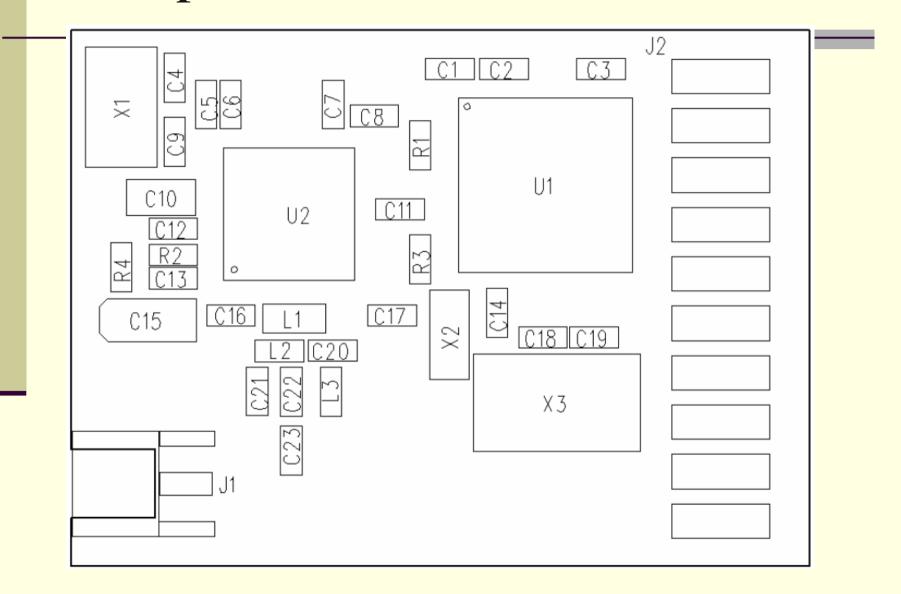
Design Example*

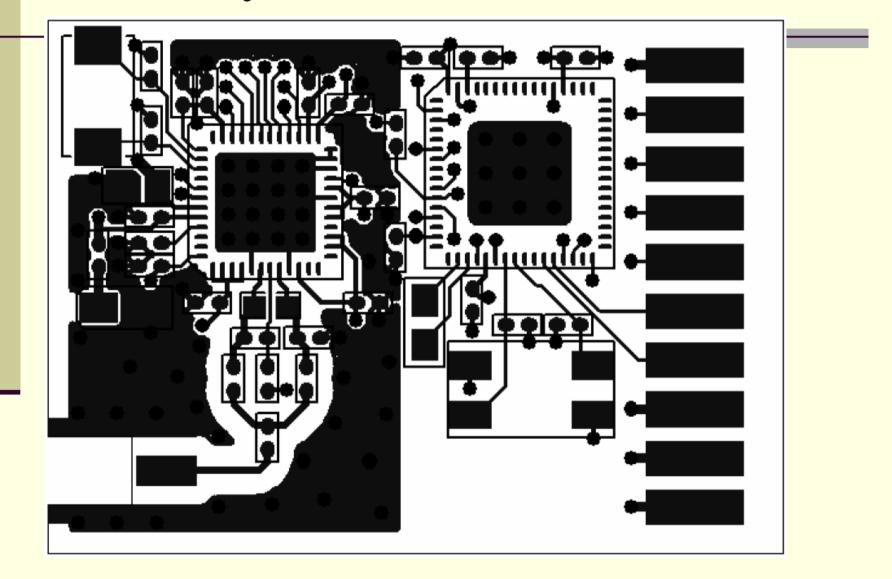

- ATMEL ATmega128L or ATmega64L 8-bit microcontroller
 - 128 or 64 kB flash memory
 - In-System Programming
 - Standard UART
- Ember EM2420 radio frequency transceiver
 - Zigbee compliant
 - 2.4GHz ISM band
 - Nominal Tx power -0.5dBm, receiver sensitivity -94dBm

*quoted from Ember application note: http://www.ember.com/downloads/pdfs/AppNote-EM2420.pdf

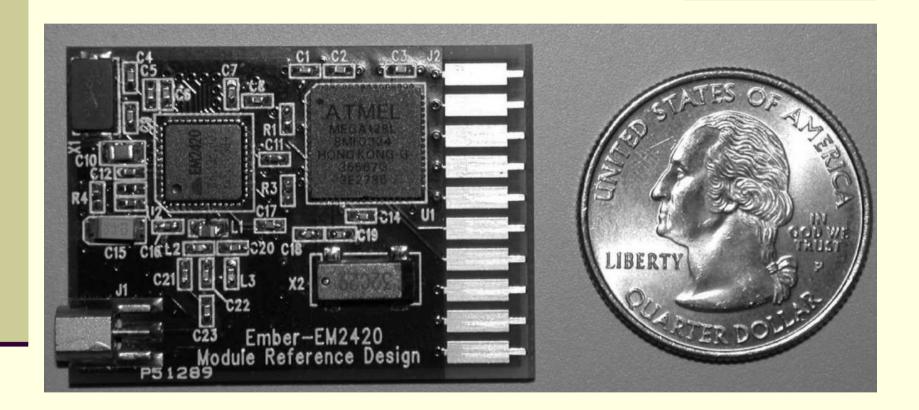

Block Diagram


Schematic Circuitry

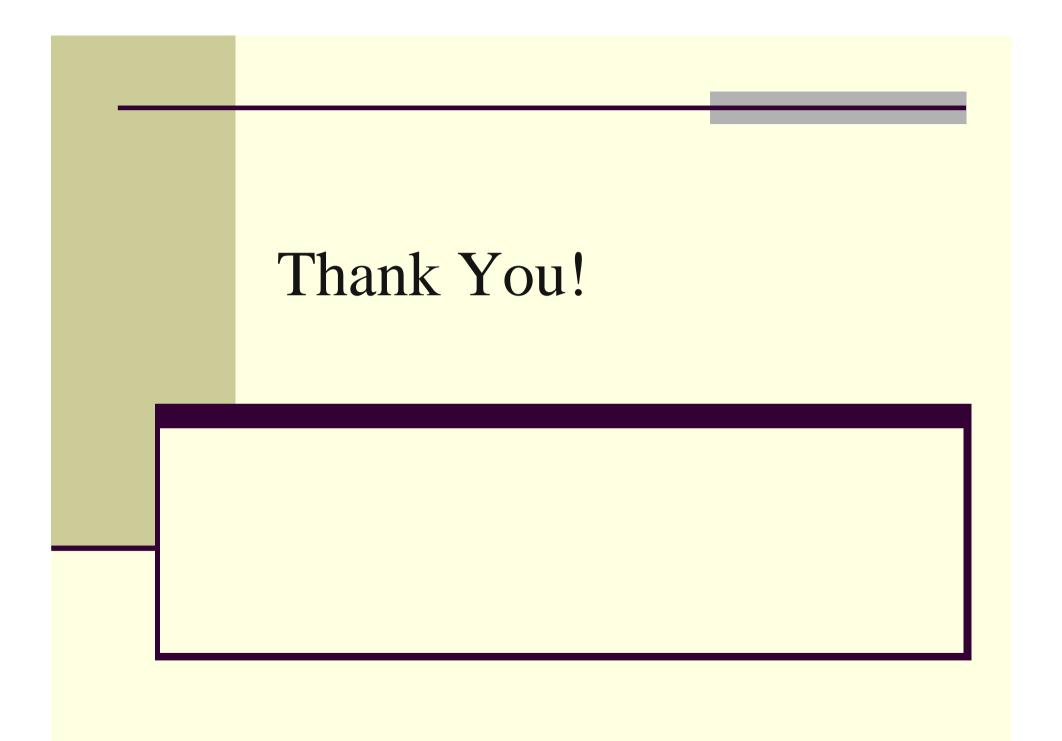

ATmegaXX configuration


RF circuits

Components Placement



PCB Layout


Gao Chao, 2005

Prototype

Conclusion

- IEEE 802.15.4 is well considered to save energy.
 - GTS
 - Active/inactive slots
 - ED
 - LQI
- Synchronization can be done locally by coordinator, but a global synchronization for a multihop peer-to-peer network is not specified (and seems difficult to be realized).
- The protocol stack is quite heavy.

