
Showcase of Combining the Meeting Portal with JADE-
based Multiagent System 

 
Aki Vainio, Joseph Awali 

University of Vaasa 
Vaasan yliopisto, PL 700 

65101 Vaasa, Finland 
+35850 544 2669 

aki.vainio@uwasa.fi, jawali2@hotmail.com 
 

Kimmo Salmenjoki 
Seinäjoki University of Applied Sciences 

Keskuskatu 34 
60100 Seinäjoki, Finland 

kimmo.salmenjoki@seamk.fi 
 

Keywords 
Multi Agent Systems, Artificial Intelligence, Applications of Ambient Intelligence, Case Studies, 
System Design and Architecture for Ambient Intelligence 

Abstract 
Bringing ambient intelligence calmly in to daily routines is complicated. Doing so in contexts where 
several people are involved, is even more complicated. This paper takes a look at one way of 
implementing an ambient intelligence application which needs to understand the contexts for several 
people and locations simultaneously. The proposed system is based on the use of agents as a method 
of distributed problem solving and the pilot application will be an intelligent meeting room with 
capabilities for videoconferencing used through a portal. 

Introduction 
This paper describes design principles for a system designed to help organize meetings through 
understanding the context and being able to work with personal agents representing the users of the 
meeting environment. Portals are becoming more and more important to organizations, which have an 
ever-increasing need to provide employees, partners, and customers with an integrated view of 
applications, information, and business processes. Our Meetingroom Portal meets these needs, 
allowing organizations to build portals that combine functionality and resources into a single interface 
while enforcing organizational policies, processes, and security requirements, and providing 
personalized views of information to end users [15]. 
 
Russell and Norvig [13] use the concept of agent as a tool for analyzing entities. They define agent as 
something with an environment, perceptions of that environment, actions which it can perform on that 
environment and goals which it wishes to achieve. In operational and legal sense, an agent is someone 
or – in this case – something who or which is authorized to work on behalf of someone or something 
else. 
 



Multiagent Systems 
“[Distributed artificial intelligence] is the study, construction, and application of multiagent systems, 
that is, systems in which several interacting, intelligent agents pursue some set of goals or perform 
some set of tasks” (Weiss, [17]). Although multiagent systems originated from the field artificial 
intelligence, they are now becoming the next step in software engineering. This is based on the notion 
that agents are the next evolutionary step from objects. Instead of working with objects, which are 
static, the systems are based on active agents. The agents can solve problems by distributing the 
problem among other agents, which are programmed to deal with certain types of subproblems. 
Because the architecture defines the way the agents interact, the person programming the individual 
parts of the system need not know how the other parts of the system work. Therefore programming 
becomes a simpler task, because the designer of an agent which works within the system can fully 
concentrate on the design of that one agent. 
 
This functionality is achieved through the use of a communications between the agents. The 
communication requires a standardized method of forming the messages and an ontology, which is 
required as a form of giving semantics to the messages, see [16]. 
 
Standards are an important tool in using multiagent systems. The JADE framework used in this paper 
follows the FIPA standard for the architecture and the ontologies used are described using OWL. By 
using standards, interoperability between systems is easier to achieve. 
 
In order to understand what a multiagent system is, one must understand what an agent is. 

Software Agent 

Singh and Huhns [11] define software agent as “an active computational entity that  
• has persistent identity; 
• can perceive, reason about, and initiate activities in its environment; 
• can communicate with other agents, including humans.” 
Russell and Norvig [13] analyze agents by looking at their performance measures, environments, 
actuators and sensors (collectively known as PEAS), which gives a nice conceptual framework for any 
ambient and intelligent embedded system applications. 
 
For example, an earthworm has the higher goal of seeing to it that its genes are passed on to the next 
generation. Its performance measure would therefore be the number of offspring it has successfully 
brought into the world (many species would also try to protect those offspring). The environment 
would be the soil its living in. Its actuators would be its muscles, through the use of which it would try 
to find sustenance, mate and occasionally relieve itself. The earthworm’s sensors are its sense of touch 
and its sight, both of which are quite limited. 
 
A Texas Hold ‘Em agent would measure its performance through winnings, its environment would 
include the cards in play and the other players (including their histories for learning purposes), its 
actuators would consist of messages through which it would either check, fold or raise, and its sensors 
would consist of the mechanism it uses to receive messages. 
 
An agent’s basic structure and its relation to the environment are presented in figure 1. For most 
software agents, the sensors are limited to messages received from the environment, sensors and from 
other agents. Usually the actuators of these agents are also limited to sending messages. They usually 
have also some other (non-agent related) functionality, but usually that functionality happens outside of 
the environment. For example, a wrapper agent used to integrate a legacy system into the multi-agent 
environment would receive requests for information through messages and would return the results 
through messages. The legacy system itself would be outside of the environment. 
 



FIPA 

FIPA stands for The Foundation for Intelligent Physical Agents. However, the physical presence of the 
agent FIPA specifications deal with is restricted to the memory of a computer. FIPA was an 
independent organization until 2005 when it was replaced by an IEEE committee by the same name. 
 
Agent systems are highly dependent on standardization, because otherwise producing compatible 
systems of agents would be extremely difficult. FIPA has taken the role of the standardization, 
although in many cases, other standards, such as those specified by W3C are used, especially when 
dealing with web environments or semantics. Standardization is obviously problematic, as standards 
are always the result of a slow process, which leads to a compromise based on the needs of participants 
of the process. Not standardizing would on the other hand lead to the loss of many of the key benefits 
of using agents, primarily the ability to work with countless other agents. 
 
FIPA is also working on finding a solution for the interoperability of web services and agents. The 
combination of these two technologies could be very powerful and some estimate that soon most user 
agents on the web are actually representing software agents. 

Architecture 

The purpose of the FIPA architecture is to ensure interoperability and reusability of code. If two 
systems need to interact, but are based on different technologies, the elements of the architectures, 
which must have common functionality, must be identified and codified. 
 
FIPA abstract architecture encompasses communications between the agents and how agents find the 
other agents they need otherwise known as directory services. In this context agent communications 
include both message transport and the encoding schemes used to form and interpret messages. 
 
Central to the FIPA architecture is obviously the agent. Agents communicate through speech acts, 
which are represented by messages. The messages are encoded in an agent communications language. 
The platform includes a number of agents, which act as services, on which the other agents are 
dependent on. 
 

E
nvironm

ent 

AGENT Sensors 

Actuators 

 

Deliberation process 

Fig. 1: Schema of the task environment of an agent (based on [12]) 



All agents are listed on at least one service-directory-service or agent-directory-service. These are 
services through which agents can find other agents they wish to interact with. These directories 
include the agent’s unique name (generally dependent on the platform in order to avoid namespace 
issues in multiplatform environment) and locator, which is a description of how to contact the agent. 
Also, the entries include any other information the agent wishes to register, such as the services it 
provides, possible costs, restrictions and so forth. 
 
Another mandatory service is the message-transport-service, which handles transporting messages 
between agents. It has access to a number of transport methods (stream, datagram, etc), from which it 
chooses the most appropriate one for the current task. Often the system includes another agent for 
communications with other agent platforms. 

JADE 

JADE (Java Agent DEvelopment) framework is a FIPA-compliant framework for multiagent systems. 
As with any software framework, the object is to simplify the development a software system. JADE 
has been written in Java and JADE agents are Java programs, which inherit agent functionality from 
the JADE API. 
 
The platforms are based on Java Virtual Machines (Java VM) and communications by Remote Method 
Invocation (RMI) between them. Within a single VM, event signaling is used. Each VM is a container 
for agents and acts as a concurrent runtime environment for agents using a thread for each agent, as 
well as separate threads for system services. One of the containers represents the platform to other 
systems outside the platform, such as other agent platforms. This container also includes the agent 
management system and other critical services. 
 
The JADE framework loosens the FIPA agent communication requirements somewhat by using a 
lighter transport of objects instead of strings within the platform. However, between platforms, 
communication is still handled by using FIPA compliant string format. This conversion is done by the 
agent communications channel, so that the agent implementers only need to deal with one Java class of 
messages. 
 
JADE also includes a Remote Monitoring Agent (RMA), through which a GUI is provided. RMA acts 
as an agent in the sense that it communicates with the agent management system just as an agent 
would. 
 

Fig. 2: FIPA Agent Platform (based on [1]) 

Internal Platform Message Transport 

Agent 
Management 
System 

Directory 
Facilitator 

Agent 
Communications 
Channel 

Agent 

Software 

O
th

er 
p

latfo
rm

s, 
w

eb
 services 



Coordination in a Multiagent System 
 
Agents are built for a purpose and agents can communicate. The ability to communicate is a property 
of the agent which makes it more capable of filling its purpose. The idea of communication is to let the 
agents within a system to coordinate their behavior in such a way that it’s beneficial for the system or 
the individual agents. 
 
Generally coordination is a method of using the resources more efficiently and avoiding situations 
which would endanger the workings of the system. In coordinating behavior, it’s important to make a 
distinction between cooperation and competition. Cooperating agents follow a common plan, which is 
devised either centrally or in a distributed manner; competing agents negotiate with other agents to 
gain a better position for themselves. 
 
For example, personal agents which are trying to set a meeting, coordinate their efforts by distributed 
planning, in other words, cooperation. Each of the agents will find suitable times from their schedules, 
possibly taking into account locations and other such matters of context. An agent responsible for 
calling the meeting will than make a decision based on that information, which hopefully suits as many 
of the participants as possible. 
 
On the other hand, if the meeting rooms are in heavy use, an agent responsible for setting the meeting 
might have to negotiate for a room. Perhaps the organization has given each department or project a 
number of tokens which can be used to “buy” meeting time in an auction or the agent might have to 
give up a reservation on another time to be able to use a certain room at a certain time. 

The Meeting Portal 
Meeting room/MyHome portal is an interface to test home-based multimedia. Besides the everyday 
applications, new approaches of semantic web, wireless technologies and context based inference will 
be tested in the laboratory setting. The portal can be used by several persons so that it gives the 
personalized and adapted view for each person differently. Also issues around home devices, location, 
and embedded programming could be built in to this portal. The main emphasis is to develop software 
solutions for modern service based ICT applications, one type of which is the previously described 
Multiagent Systems. 
 
Although the idea of a meeting is not very complex, the situation can turn very complicated once there 
are several locations involved. Keeping such a meeting under control can require a lot of coordination. 
In this case, much of the responsibility for the coordination has been placed on a software agents rather 
than people. 
 
For accessing the meeting room with the portal we have to coordinate activities in space and time. 
Several users will have access to the portal, and their requests and responses will be displayed and 
stored via the Meeting room portal. When some actions are taken by the users, the role of the agents in 
the MAS is to see to the user’s personal needs (via the personal agents) or to coordinate and assist the 
activities in the space via the shared context data and the MAS system activities. 
 
We have implemented only a few cases, where demonstrative examples of use cases in the meeting-
room. These examples show how the portal and MAS can coexist to provide the user some user 
centric, context aware services. 

Context and Ontologies 

Understanding the context in the meeting room is an important function of the system, as it enables the 
agent to make assumptions on which to base decisions. Important, but hard to handle, contextual 
problems include those of space and time. Other contextual information includes participants and so 
forth. 
 



The role of context also relaxes the user interfacing of the portal and connects the activities of agents 
and humans together. 
 
The two aspects needed for describing the domain of agent activities are covered by the ontologies in 
our case describing the organization and operation of agents in the laboratory space by describing the 
knowledge structures and their relations with rules of operation. For this purpose we will use the 
COBRA system structure [2] directly. COBRA uses ontologies both for Semantic Web languages both 
to express context ontologies and to reason about contexts. For this purpose OWL (Web Ontology 
Language) is used. 
 
Space information can be divided into places and agents. Places include such classes as Place, 
AtomicPlace, CompoundPlace, Room, Building, Campus and so on. Their properties include 
coordinates, spatial relations to other places (ie. which place subsumes which other places and vice 
versa), restrictions on access and so forth. Agent classes include Agent, Person, SoftwareAgent, Role, 
SpeakerRole, other roles as needed and action related classes. Agent properties include personal 
information and the agent’s role at the meeting. Other classes used involve the agent’s relation to 
places (in other words, where the agent is currently located) and agent’s activity (in this portal we are 
only interested in whether the agent is participating or will participate in an event or meeting and what 
his role in that event or meeting will be). 
 
Understanding contexts is an important aspect of pervasive computing as it enables the agents to apply 
calmness to the technologies used. By being able to understand context, the user interfaces can be 
changed to better fit the situation. For example, if there is a videoconference with multiple locations 
participating, the agents responsible for the views can emphasize the videostream from the source 
where the current presentation is going on. 
 
 

 
Fig. 3: Context Broker architecture [2] 
 



In the meeting room example, understanding context means also understanding the surroundings. As 
shown in figure 3, the context broker can communicate with the devices in the meeting room area or 
areas. Depending on the capabilities of the devices, this can mean setting lighting, switching 
microphones on and off and so forth. 

Users 

When the users register to the portal, their identity and preferences will be recorded. Based on this user 
profile, the various activities of the meeting room will be activated in the portal as requested by the 
user. The core user services will be provided by the user’s personal agent in the shared Multi Agent 
System MAS context of COBRA on JADE. Also, if there are shared contexts between the users, the 
MAS can assist the users in sharing the meeting-room space and also possibly some other areas of 
interest shared by the different users.  

Privacy 

Users are profiled according to their role and activities in the meeting-room. Together with this basic 
information of the user, the actions of the user on the portal get recorded in the portal database. 
 
To support the user via the agents, the MAS will deal with the user profile and context data. This 
assumes of course that the user has confidence in the system and is willing to share his/her context with 
the other users and the MAS. Users can provide privacy rules for their personal information and 
context. 
 
As shown in figure 3, the context broker uses – if available – information from devices carried by the 
users. This can present problems if the users do not trust the system and are unwilling to disclose the 
information. In these cases the context broker can still use the information from other sources and use 
assumptions. For example, if there are three unidentified persons in a meeting room, where there are 
supposed to be three participants for a meeting, the system can assume that those three are the persons 
are the participants. 
 
On the other hand, if the user feels that the context broker is trustworthy and can protect his or her 
privacy adequately, the user can even take an extra step and allow the context broker a limited control 
over his or her devices. For example, the context broker could switch cellular phones to vibrate when 
the meeting starts and back when the meeting ends. This would obviously require an interface through 
which the context broker can access the appropriate controls. 

Conclusions 
In this paper we have presented the basic ideas behind multiagent systems and the principles through 
which the concept can ease the development of systems which require integration of many different 
parts. Their usability in an ambient system is demonstrated by a real-world application of a 
Meetingroom Portal, which is largely dependent on the context broker agent (COBRA) and its 
interaction with other agents, devices, users and services available to it. This meeting-room portal will 
be used as test bed for providing wireless services with digital media and physical location in the 
Technobothnia laboratory in Vaasa. 



References 
[1] F. Bellifemine, A. Poggi, G. Rimassa. JADE – A FIPA-compliant agent framework. (1999) 
[2] H. Chen. An Intelligent Broker Architecture for Pervasive Context-Aware Systems. (2004) 
[3] E. Cortese, F. Quarta, G. Vitaglione. Scalability and Performance of JADE Message Transport System. 

(2002) 
[4] FIPA 2000 Specifications. http://fipa.org/repository/standardspecs.html (2000) 
[5] The Foundation for Intelligent Physical Agents. http://www.fipa.org. (2007) 
[6] S. Frankin and A. Graesser. Is it an Agent, or just a Program?: A Taxonomy for Autonomous Agents 

[online]. Available: http://www.msci.memphis.edu/~franklin/AgentProg.html. (1996) 
[7] JADE Framework. jade.tilab.com (2007) 
[8] C. Kindle. Agent Systems’ Influence on Information Retrieval. (2003) 
[9] Y. Labrou, T. Finin and Y. Peng. Agent Communication Languages: The Current Landscape. IEEE 

Intelligent Systems, vol. 14, no. 2, p. 45–52. (1999) 
[10] M. Luck, R. Ashri and M. D’Inverno. Agent-Based Software Development. (2004) 
[11] L. Padgham and M. Winikoff. Developing Intelligent Agent Systems – A Practical Guide. (2004) 
[12] J. Pitt, F. Bellifemine. A Protocol-Based Semantics for FIPA’97 ACL and its implementation in JADE. 

(1999) 
[13] S. Russell and P. Norvig. Artificial Intelligence – A Modern Approach, 2nd edition. (2003) 
[14] M.P. Singh and M.N. Huhns. Service-Oriented Computing – Semantics, Processes, Agents. (2005) 
[15] UWasa Meetingroom Portal. http://ttwin.techno.uwasa.fi/Meetingroom. (2007) 
[16] C. van Aart, G. Caire, R. Pels, F. Bergenti. Creating and Using Ontologies in Agent Communications. (2002) 
[17] G. Weiss (ed.). Multiagent Systems – A Modern Approach to Distributed Artificial Intelligence. (1998) 
 


