Ghodrat Moghadampour, PhD
Vaasa University of Applied Sciences
Vaasa, Finland
Mobile: +358407616223
Fax: +358 6 326 3112

E-Mail: mg@puv.fi

Keywords

Evolutionary algorithms, genetic algorithms, partaneontrol, adaptation, mutation

Abstract

Evolutionary algorithms are affected by more parnmsethan optimization methods typically.
This is at the same time a source of their robsstras well as a source of frustration in
designing them. Adaptation can be used not onlyifioling solutions to a given problem, but
also for tuning genetic algorithms to the particydeoblem.

Adaptation can be applied to problems as well asvtdutionary processes. In the first case
adaptation modifies some components of genetiaitthgas to provide an appropriate form of
the algorithm, which meets the nature of the gipesblem. These components could be any
of representation, crossover, mutation and selectiothe second case, adaptation suggests a
way to tune the parameters of the changing cordigur of genetic algorithms while solving
the problem.

In this paper a brief review of adaptation teche&is provided and some new techniques to
implement adaptation in the mutation process agsquted.

1. Introduction

Evolutionary algorithms are heuristic algorithmshieh imitate the natural evolutionary
process and try to build better solutions by gréigumproving present solution candidates.
They are mainly used to solve problems which ard t@asolve in conventional ways or there
is no pre-known solution for them. In an evoluionalgorithm 1) problems are described by
a set of parameters, 2) parameters are interpesiea set of artificial genes, 3) genes are
considered as blueprints of individuals and 4) etioh is applied to individuals (Fogel,
Owens & Walsh 1966; Rechenberg 1973; Holland 18Tk 2005).

It is generally accepted that any evolutionary athm must have five basic components: 1) a
genetic representation of a number of solutionthéproblem, 2) a way to create an initial
population of solutions, 3) an evaluation functifor rating solutions in terms of their
“fitness”, 4) “genetic” operators that alter thengéc composition of offspring during
reproduction, 5) values for the parameters, e.gulation size, probabilities of applying
genetic operators (Michalewicz 1996).

Genetic algorithm is one kind of evolutionary algfums, which starts the solution process by
randomly generating the initial population and thefining the present solutions through
natural like operators, like crossover and mutatidme behavior of the genetic algorithm can
be adjusted by parameters, like the size of thairpopulation, the number of times genetic

operators are applied and how these genetic opsrate implemented. Deciding on the best
possible parameter values over the genetic run deaflenging task, which requires even
better and efficient techniques.

2. Genetic Algorithm

Most often genetic algorithms (GAs) have at ledst following elements in common:
populations of chromosomes, selection accordingfitteess, crossover to produce new
offspring, and random mutation of new offspridgsimple GA works as follows (Mitchell 1998):

1. Start with a randomly generated populatiom &bit strings (chromosomes)
2. Calculate the fitnesgx) of each bit string in the population
3. Repeat the following steps untiloffspring have been created:

i. Select a pair of parent bit strings from the curmopulation, the probability of selection
being an increasing function of fitness. Selecti®mone “with replacement”, meaning
that the same chromosome can be selected moreticarto become a parent.

ii. With probability Pc (crossover probability or crossover rate) croserahe pair at a
randomly chosen point (chosen with uniform probghilto form two offspring. If no
crossover takes place, form two offspring thatexact copies of their respective parents.
In multi-point crossover the crossover rate fora@ pf parents is the number of points at
which a crossover takes place.

iii. Mutate the two offspring at each locus with probgbipm (the mutation probability or
mutation rate), and place the resulting bit strimghe new population

4. Replace the current population with the new pojatat
5. Goto step 2.

3. Control Parameters

Evolutionary algorithms are affected by more paramsethan optimization methods typically. This is
at the same time a source of their robustness Hsawi@a source of frustration in designing them
(Michalewicz & Fogel 2004).

Adaptation can be used not only for finding solnsido a given problem, but also for tuning genetic
algorithms to the particular problem (Gen et aD@0 Adaptation can be applied to problems as well
as to evolutionary processes. In the first casaptation modifies some components of genetic
algorithms to provide an appropriate form of thgoakthm, which meets the nature of the given
problem. These components could be any of reprasemt crossover, mutation and selection.

In the second case, adaptation suggests a waydatite parameters of the changing configuration of
genetic algorithms while solving the problem (Genaé 2000). Some of such parameters are:
population size and structure, like subpopulatigesnome representation (floating point, binaryspar
tree, matrix), precision and length, crossover t{gg&hmetic, -point, etc.), the number of crossove
points and probability, mutation type (uniform, Gaian, etc.), mutation variance and probability,
selection type (tournament, proportional, etcyrmament size.

The challenge is that optimal parameters of an ERApaoblem dependent and there is a large set of
possible EA settings. The No-Free-Lunch theoremligapthat no set of parameters for an EA is
superior on all problems (Krink 2005). Finding ttight parameter values is a time-consuming task
and it has been the subject of many researches.

The main criteria for classifying parameter settingthods are: 1) what is changed, 2) how the change
is made. The first criterion refers to the compdseri the evolutionary algorithm and consists af si

categories: 1) representation, 2) evaluation fongti3) variation operators (mutation and
recombination), 4) selection, 5) replacement, §ubetion.

The second criterion refers to the parameter ggettiethods, which can be divided to three main
types: 1) deterministic (or fixed) parameter cohff@so called parameter tuning) in which the
parameter-altering transformations takes no inpeiables related to the progress of search mefjod,
adaptive (also called explicitly adaptive) parametantrol in which there is some form of feedback
from the search, 3) self-adaptive (also called icihy adaptive) parameter control in which the
parameters to be adapted are encoded into the oboones and undergo mutation and recombination
(Eiben, Hinterding & Michalewicz 1999).

Since all components of the algorithms have pararsgtvhich need to be set to reasonable
values, manual tuning is impossible to avoid cotgbyeeven in adaptive control techniques.
Furthermore, most advanced parameter control tquabeialso have parameters. However,
adaptive parameter control seems to be still wodig to the following facts: 1) the
performance of parameter-varying algorithms is dvetR) since the control technique is
usually more robust with respect to parameter seitgituning; the control method is often
easier than tuning the actual parameters (Urser)200

4. Mutation Operators

Mutation is a bit reversal event that occurs witte8 probabilitiesp, per bit. Efforts to tune
the mutation probability have resulted to differeatues and hence leaving practitioners in
ambiguity. As results of tuning “optimal” mutatioate, the best rate found to ipe,, = 0.001

(De Jong 1975)p,,,=0.01 (Grefenstette 1986)p,, D[0.00S,0.0]L (Schaffer et al. 1989) and

P :}I/_ (Muhlenbein 1992), wherd. is the length of the bit string (Michalewicz et al
2004).

Different techniques for updating the mutation rater time have also been presented by
different researchers. A time dependent scheduledotrolling the mutation is presented in
(Laumanns, Rudolph & Schwefel 1998; Laumanns, Rud& Schwefel 2001). Here the
mutation step sizes are discounted by a constatdrfeach time an offspring is produced.
Fogarty presented three ideas for controlling theaton rate in bit-flip mutation (Fogarty
1989; Ursem 2003). The first idea was to contrel hutation ratep, (t) by an exponential

decreasing function of the generation numberccording to the following formula:

1 0.1137¢
t)y=—+ . 1
Pt 540 3 (1)

The second idea was to have different mutationsride different bits in the chromosome.
More precisely to have high mutation rates on #ast significant bits and low mutation rates
for the most significant bits according to the daling formula:

.. _ 0.3528
P (i) :?

wherei is the bit number and=1,2,...1(¢, with i =1being the least significant bit.

, (2)

The third idea was to combine two previous formaad control the mutation rates according
to the following formula:

28 +O.4026
1905.2% 2t
Fogarty compared these three schemes with a schusing constant mutation rate of
p, =0.01 and noticed that the combination of varying acrbssh generations and bit
number was the best of all four techniques (Urse682

3)

P (t1) =

A theoretically optimal schedule for determinisigachanging p,, for the counting-ones
function is presented in (Hesser & Manner 1991gRibt al. 1999; Michalewicz et al. 2004).
Here, the value fomp,, is defined in the following way over tine

-nt
o
p.(t) = E BN (4)

wherea, B and y are constants] is the population sizd, is the string length ant is the
generation number.

The function to control the decrease mf is defined as a linear decreasing function frofn 0.
to %_ in generationT in (Back & Schitz 1996; Eiben et al. 1999 and brs2003). The

value of p_(t) is constrained so thagt (0)= 0.5, p,,(T) :% and otherwise:

L-2

-1
pm(t):(2+ tj , If 0<t<T. (5)

An optimal schedule for decreasing the mutatioe @ a function of the distance to the
optimum is defined in (Back 1992 a; Eiben et al99;9Michalewicz et al. 2004) in the
following way:

IO —

2(f(x)+1)-L°
The idea of varying the mutation rate over bothrmex number and generation was revisited
and implemented in slightly different form from ttraditional bit-flip mutation operation in

(Janikow et al. 1991; Ursem 2003). The new mutabperator was calledion-uniform
mutation for binary encoding and was derived from the versised for real encoding. The

operator mutates th&'th (k=1,2,3,..q) binary encoded parametet of a candidate
solution X = (X;,..., % ,---X, Jaccording to:

(6)

t+ _ {Xf< +A(t, righ(k) — x.), if a random binary digit is @)

< X —A(t, % —left(k)), if a random binary digit is '

The functionsleft(k) andright(k) determine the valid rang{éeft(k),right(k)] for each point
X, in the search space, where other variableéi =1,...k — 1k + 1,...¢0) remain fixed. The
function A(t,y) returns a value in the randé,y] so that the probability ofA(t,y) being
close to O increases as the generation nuntbeGreases. This property causes this operator

to search the space uniformly initially, whenis small, and very locally at later stages.
Function A(t, y) is defined as:

NP
Aty) = yr-—), (8)

where r is a random number from [0, 1T, is the maximal generation number, abhds a
system parameter determining the degree of noroumify.

Controlling the variance in Gaussian mutation is/\@itical in successful application of real-
encoded EAs. The standard approach for doing #i® iset the variance of the mutation
according to a monotonic decreasing function dejpgndn the generation number. These
heuristic functions are usually developed by sormitng the experimental data and forming a
hypothesis from the relationship between the perémrce of the algorithm and how the
parameters were changed (Ursem 2003).

A classical adaptive method for changing the maitasitep size is Rechenberg’s 1/5 rule for
Gaussian mutation in (1+1)-EAs presented in (Reloben1973; Eiben et al. 1999). This rule
states that the ratio of successful mutations ltanatations should be 1/5 measured over a
number of generations. The standard deviatorshould increase if the ratio is above 1/5,
decrease if it is below, and remain unchanged ig it/5 (Ursem 2003). It is assumed that
maximum progress can be achieved through mutattep sizes leading to a success
probability of approximately 20%.

The ratio between crossovers and mutations is aegilbased on their performance in

(Julstrom 1995; Eiben et al. 1999). Both operatwesused separately to create an offspring,
and the algorithm keeps a tree of their recentrdmritons to the new offspring and rewards

them accordingly.

Mutation rates in a parallel GA are adapted wittaraning model in (Lis 1996; Eiben et al.
1999). Probability of mutation, crossover and tlopydation size in an algorithm of parallel
farming model has been adapted in (Lis & Lis 198#en et al. 1999). They use parallel

populations and each of them has one value, oatpafssible three different values for,,

p. and the population size. The populations are coedpafter a certain period of time, and
then the values fop,,, p.and the population size are shifted one level tagdne values of
the most successful population (Eiben et al. 1999).

Gaussian mutation of a real-encoded variaklas usually performed according to (Ursem
2003):
X =x +N(0,0 (t)). 9

The traditional approach to set the mutation vaeans using either a linear or an
exponentially decreasing function such as:

o, (t) =11+t (10)

Self-adaptive control of mutation step sizes hanlreported in (Schwefel 1995; Back 1996;
Back et al. 1997; Eiben et al. 1999). Mutatingaafing-point object variable; happens in

the following way:

X =x +0o,N(0,1), (11)
where the mean step sizes are modified lognormally:
o =o,exp'N (0,1+ 7N, (0,1), (12)

where rand 7' are the so-called learning rates. The valuegofcan also be modified
normally:

g/ =0, +{oN(0,1), (13)

where { is a scaling constant (Fogel 1995; Eiben et al919EBmpirical evidence suggests

that lognormal perturbation of mutation rates isf@rable to Gaussian perturbations on fixed-
length real-valued representations (Saravanan &IF©§94; Saravanan, Fogel & Nelson
1995; Eiben et al. 1999). However, a slight advgataf Gaussian perturbations over
lognormal updates for self-adaptively evolving ténstate machines is reported in (Angeline,
Fogel & Fogel 1996; Eiben et al. 1999).

Significant improvement can be achieved by contrglithe mutation variance by other
techniques than a strictly decreasing function €or2003). The so-called sand pile model
was used to generate power-law distributed numioersontrolling the variance in Gaussian
mutation (Krink, Thomsen & Rickers 2000; Ursem 200Bhe sandpile model is a simple
approach to study many complex phenomena foun@ture and is an example of how self-
organized criticality (SOC) can be generated by sénple means (Bak 1996; Ursem 2003).

Self-adaptation of the mutation step size for oing numeric functions in a real valued GA

is applied in (Hinterding 1995; Eiben et al. 1998)another experimentation individuals are

replaced by their offspring. Probabilities of crmésr and mutation for each chromosome are
added to its bit string and adapted in proportmthe population maximum and mean fithess
(Srinivas & Patnaik 1994; Eiben et al. 1999). Iru(awe 1991; Laumanns et al. 2001) the
selection criterion changes randomly over time.nfake individuals cope with the changing

environment they are supplied with a set of stegssifor each objective function through

polyploidy. Polyploidy is a situation when the nuenlof chromosomes in a cell becomes
doubled. This can happen by a mutation that sinnpikes two copies. It can also happen
when the chromosomes from two different speciesraxed.

The mutation rate of GAs can also be self-adaptedddling the rate of mutating,,, coded
in bits, to every individual. Then the new, is used to mutate the individual's object
variables. This is based on the idea that bgtterates will produce better offspring and then

hitchhike on their improved children to new genierag, while bad rates will die out (Back
1992 a, Back 1992 b; Eiben et al. 1999). The sal®a with an implementation of 1/5 success
rule for mutation has been applied on a steadg-$# in (Smith & Fogarty 1996; Eiben et
al. 1999).

Laumanns et al. (2001) discuss the problem of odimg mutation strength in multi-
objective evolutionary algorithms and its implicais for the convergence to the Pareto set. A
Pareto set is defined to be the set of all Parptonal decision vectors and a Pareto optimal
vector is defined to be a vector, which makes tpenozation function converge the most.
Convergence here refers to the iterative approdcpopulations to the Pareto set of the
underlying optimization problem.

An algorithm should ensure convergence to Paret@arseé provide a “good” distribution of
solutions in order to find or to approximate thé¢ gkeefficient or Pareto-optimal solutions.
Fitness assignment methods based on the notionowiindnce seem to produce better
solution distributions than plain aggregating methoDensity based selection methods
maintain diversity and the use of elitism speedshapsearch in the direction of the Pareto set
and ensure convergence properties. (LaumannsgeZig&IThiele 2001; Rudolph & Agapie
2000; Laumanns et al. 2001). However, virtuallyimplementations focusing on the role the
variation operators in evolutionary multi-objectieptimization use standard non-adaptive
operators from the single objective case (Laumatmas 2001).

Approximating the Pareto set of a multi-objectivptimization problem by evolutionary
algorithms faces two main problems:

1. The velocity and reliability of convergence to tRareto set, same as in single
objective optimization.

2. Distribution of solutions, caused by the existentenultiple Preto-optimal solutions
in the multi-objective case.

Laumanns et al. (2001) present the so-called Ryeaey model. In this model predator

individuals move across the spatial structure so they delete the worst prey individual of

their neighborhood according to their associatgéative function. The authors present two

adaptation rules capable of increasing the stegssin need for the model: 1) the standard
mutative self-adaptation and 2) self-adaptatioough recombination frequency. These rules
have worked well. The model converges to the Pasetodue to the superior success
probability of single criteria selection in the wity of the Pareto set, where it gets

increasingly difficult to make cooperative stepanfirone mutation alone.

The second method, self-adaptation through reccemibim frequency, combines the implicit
evaluation of good “inner models” through fithesaleation and selection with a fixed but
flexible schedule depending on the recombinati@gdency. In this way all individuals use
bigger step sizes for the early offspring and sendtr later ones. The mutation of the step
sizes is done deterministically according to tHe:ru

o =g, yOjo,q. (14)

Here d denotes the number of descendants an individuslphaeduced so far. The delay
parameterd, determines the number of descendants that mustléed before smaller step
sizes are passed on to the offspring. The adapta#te can be controlled by. In this

schedule for step sizes just one order of magnitmdater than the optimal ones the success
rate rapidly goes to zero. Therefore it is a matfetime until appropriate step sizes will be
found.

5. Adaptive Mutation Operators

One major problem with the classical implementatdribinary mutation, the multiple point
mutation or the crossover operator is that it Eialilt to control their effect or to restrict
changes caused by them within certain limits.

Therefore, several techniques are developed toeimgiht the genetic operators intelligently
so that the resulting modifications on the binanng will cause changes in the real values

within the desired limits. This idea is implementsal that the real value of the variable is

randomly changed within the desired limits and rtinadified value then is converted to the

binary representation and stored as the valueef/éiniable. In this way we can cause more
intelligent mutations in the bit strings and makeesthat changes in real values are within the
desired bounds.

Apparently, changes of different magnitudes areuireq at different stages of the
evolutionary process. Thus, two types of decimalation operators have been implemented:

1. For modifying variables with integer values. Theubds for the absolute values of
such changes are at least 1 and at most the irpageof the real value representation
of the variable. This means that the upper bountth@frange may vary even for each
variable of the same individual. The randomly sieddanutation value may be either

positive or negative. Thus, if the integer parttio¢ variable is|int(variab|e)|, the
integer mutation range is| 1,/int(variable)].

2. For modifying variables with values from the rang®1). The lower bound for the

absolute value of such changes is determined byefeired precision of the real

value presentation of the variable, lik6®. The upper bound for the absolute value of
such changes is determined by decimal part of Hrable. Here also the mutation
value can be either positive or negative. Thuthefnumber of digits after the decimal
point for a variable isprecisionyariable), and the decimal part of the variable is

decimal@ariable), the range for the real mutation values is
+ [10_ precision(vaiable),| decimalVari able D:I .

5.1 The Integer Mutation Operator

The integer mutation (IM) operator mutates the individuals of the populationrelatively
great magnitudes. During this operation an intagatation valuel is selected randomly
from the following range:

rO +[1]int(variable) | (15)

and added to the variable under mutation. H|dn€(,variable)| stands for the absolute value of

the integer part of the variable. Clearly, thiseger part does not necessarily cover the whole
range of the variable. To avoid wasting resourgegisl care is taken to make sure that the
generated random number is not 0. Thus, the upmpendbfor the integer mutation value is
different for each variable and is defined by thsaute value of the integer part of the
variable. This will make the process more flexibfel intelligent.

If the upper bound of the mutation value is setatdixed value, the operator becomes
inefficient or the probability for its failure willise. For instance, if the optimal value of a
variable is 0.05 and its present value 80.64, wienged 80 successful integer mutations of
magnitude 1 in order to get close to the optimdueeof the variable. However, if the

magnitude of the integer mutation value can be ahyoally determined by the magnitude of

the variable, the operator will have a much grealt@nce to improve the value of the variable
dramatically in a short time.

During this operation for each variable in the indwal, first a Boolean value is randomly

generated that determines whether the mutatioratiperfor the variable at hand should take
place or not. If the Boolean value is true, theradomly generated integer number within
the specified bounds is added to the decimal vafldlee variable. This process is repeated for
each variable of the individual separately and lingary representation of the resulting

offspring is updated. The offspring is then evaddaand put through the survivor selection
procedure. Once this process is ready, the newproffs goes through the variable

replacement operator for possible improvement. Nt offspring, which has possibly been
modified by the variable replacement operator, gbhesugh the survivor selection procedure
for possible substitution. There is no fixed rate this operator. All population members go
through this operator at least once. This operasa@ombined with the variable replacement
operator described previously. After going throubk variable replacement operator, the
offspring goes again through the survivor selectowacedure for evaluation and possible
selection.

5.2 The Decimal Mutation Operator

The decimal mutation (DM) operator is used in order to implement changésmaller
magnitudes on individuals. During this operatiom+zero decimal numbers in the specific
range are randomly generated and added to themmdpndelected variables in the individual.
The upper bound for the decimal mutation valuedeiermined by the absolute value of the
decimal part of variables. If the decimal part ofasiable is denoted bydecimalgariable ,)

the maximum distance of the mutation values frois |decima|(/ariable}. The lower bound
of the mutation range is determined by the numlbeligits after the decimal point. Thus, if
precisionyariable) shows the number of required decimal places areable, the decimal
mutation value is determined in the following way:

¢ 0+ [lo—precision@ariable),| decimalvariable |)} (16)

The difference between this operator and the imtegatation operator is the way the
mutation value is determined. Otherwise, theseaipes are similar. Figure 17 provides the
pseudo code for the operator.

6. Experimentation and Conclusions

The integer mutation operator, which can be congpdre the multiple point mutation
operator, selects randomly an integer mutation rexnbletween 0 and the magnitude of the
integer part of the variable and randomly decidéethver to add or subtract the mutation
number from the variable.

The decimal mutation operator selects randomlycnti mutation value greater than 0 and
less than 1. Then it randomly decides whether tb@dsubtract the mutation decimal value
from the variable.

These operators were tested on 44 test probler@206a runs. Experimentation showed that
the most efficient operators are the integer momatnd the decimal mutation operators,
which were able to improve the population fitneahkies the most.

7. References

Angeline, P.J., D.B. Fogel & L.J. Fogel (1996). éngarison of self-adaptation Methods for
finite state machines in dynamic environmentsPruceedings of the 5™ Annual
Conference on Evolutionary Programming. Eds L.J. Fogel, P.J. Angeline & T. Back,
MIT Press.

Back, T. & M. Schitz (1996Intelligent mutation rate control in canonical geoe
algorithms. In: Foundations of intelligent systert®79. In:Lecture Notesin Artificial
Intelligence, 158-167. Eds Z. Ras & M. Michalewicz. Springerridg.

Back, T. (1992 a). The interaction of mutation ra&ection, and self-adaptation within a
genetic algorithmin: Proceedings of the 2nd Conference on Parallel Problem Solving
from Nature, 85-94. Eds R. Manner & B. Manderick, B. North-ldold.

Back, T. (1992 b). Self-adaptation in genetic alpons. In: Toward a Practice of
Autonomous Systems: Proceedings of the 1st European Conference on Artificial Life,
263-271. Eds F. J. Varela & P. Bourgine. MIT Press.

Back, Thomas, Ulrich Hammel & Hans-Paul Schwef89(#). Evolutionary computation:
comments on the history and current stateHendbook of Evolutionary
Computation. Eds Thomas Béck, D. B. Fogel & Z. Michalewicz viN¥ork: Oxford
University Press.

Bak, P. (1996)How Nature Works. Copernicus, Springer-Verlag: gdition.

Eiben, Agoston E., Robert Hinterding & Zbigniew Matewicz (1999). Parameter control in
evolutionary algorithmd EEE Transactions on Evolutionary Computation 3(2), 124-
141. This paper has won the 2001 IEEE Transacbartsvolutionary Computation
Outstanding Paper.

Fogarty, T. (1989). Varying the probability of mtiten in the genetic algorithm. In:
Proceedings of the 3" International Conference on Genetic Algorithms, 104-109. Ed.
J.D. Schaffer. Morgan Kaufmann.

Fogel, D.B. (1995)Evolutionary Computation. IEEE Press.

Fogel, L. J., A.J. Owens & M.J. Walsh (196Aitificial Intelligence through Smulated
Evolution. Chichester, UK: John Wiley.

Hesser, J. & R. Manner (1991). Towards an optimatiation probability for genetic
algorithms. In: Proceedings of th& donference on parallel problem solving from
nature. Eds H.-P. Schwefel & R. M&nner. llecture Notes in Computer Science 496,
23-32. Springer-Verlag.

Hinterding, R. (1995). Gaussian mutation and seé#paation in numeric genetic algorithms.
In: Proceedings of the 2 IEEE Conference on Evolutionary Computation, 384-389.
IEEE Press.

Holland, J. H. (1975)Adaptation in Natural and Artificial Systems. Ann Arbor: MI:
University of Michigan Press.

Janikow, C. Z. & Z. Michalewicz (1991). An experimal comparison of binary and floating-
point representations in genetic algorithms Aroceedings of the Fourth
International Conference on Genetic Algorithms. Eds R. K. Belew & L. B. Booker.
Morgan Kaufmann.

Julstrom, B.A. (1995). What have you done latelynf@? Adapting operator probabilities in
a steady-state genetic algorithm. Rnoceedings of the 6™ International Conference
on Genetic Algorithms, 81-87. Ed. L. Eshelman. Morgan Kaufmann.

10

Krink, T., R. Thomsen & P. Rickers (2000). Applyisglf-organized criticality to
evolutionary algorithms. IrParallel Problem Solving from Nature VI (PPSN-2000),
1, 375-384. Eds Schoenauer et al.

Krink, Thiemo, Bogdan Filigi & Gary B. Fogel (2004)Noisy Optimization Problems- A
Particular Challenge for Differential Evolution? Available at:http://www.natural-
selection.com/Library/2004/CEC04_Noisy.pdf. Checkebecember 2005

Kursawe, Frank (1991). A variant of evolution stgiées for vector optimization. Iiarallel
Problem Solving from Nature, 193-197. Eds H.-P. Schwefel & R. M&nner. Berlin:
Springer.

Laumanns, Marco, Eckart Zitzler & Lothar Thiele Q2Q. On the effects of archiving, elitism
and density based selectio in evolutionary muljeotive optimization. In:
Evolutionary multi-criterion optimization (emo 200Ed. E. Zitzler. InLecture Notes
in Computer Science 1993, 181-196. Berlin: Springer-Verlag.

Laumanns, Marco, Gunter Rudolph & Hans-Paul Schw898). A spatial predator-prey
approach to multi-objective optimization: a prelmary study. InParallel Problem
Solving From Nature (PPSN-V), 241-249. Eds Agoston E. Eiben et al. Berlin:
Springer.

Laumanns, Marco, Gunter Rudolph & Hans-Paul Schw2@91). Mutation control and
convergence in evolutionary multi-objective optiatinn. In:7" International
Conference on Soft Computing MENDEL 2001, Brno, Czech Republic, June 6-8.

Laumanns, Marco, Giunter Rudolph & Hans-Paul Schiw2@91). Mutation control and
convergence in evolutionary multi-objective optiatipn. In:7" International
Conference on Soft Computing MENDEL 2001, Brno, Czech Republic, June 6-8.

Lis, J. & M. Lis (1996). Self-adapting parallel geic algorithm with the dynamic mutation
probability, crossover rate and population sizePhwoceedings of the 1% Polish
National Conference on Evolutionary Computation, 324-329. Ed. J. Arabas. Oficina
Wydawnica Politechniki Warszawskiej.

Lis, J. (1996). Parallel Genetic algorithm with dymc parameter control. IProceedings of
the 3" |EEE Conference on Evolutionary Computation, 324-329. IEEE Press.

Michalewicz, Zbigniew & David B. Fogel (2004)low to Solve It: Modern Heuristics.
Second, Revised and Extended Edition. Germanyn&@riVerlag Berlin Heidelberg.
ISBN 3-540-22494-7.

Michalewicz, Zbigniew & David B. Fogel (2004low to Solve It: Modern Heuristics.
Second, Revised and Extended Edition. Germanyn&griVerlag Berlin Heidelberg.
ISBN 3-540-22494-7.

Michalewicz, Zbigniew (1996)Genetic Algorithms + Data Structures = Evolution
Programs. Third, Revised and Extended Edition. USA: Sprm¢®BN 3-540-60676-
9.

Mitchell, Melanie (1998)An Introducton to Genetic Algorithms. United States of America: A
Bradford Book. First MIT Press Paperback Edition.

Muhlenbein, H. (1992). How genetic algorithms rga¥ork: 1. mutation and hill-climbing.
In: Parallel Problem Solving from Nature 2. Eds R. Manner & B. Manderick. North-
Holland.

Rudolph, G. & A. Agapie (2000). Convergence prapsrof some multi-objective
evolutionary algorithms. InCongress on Evolutionary Computation (CEC 2000) 2,
1010-1016. Piscataway, NJ: IEEE Press.

Saravanan, N., D.B. Fogel & K.M. Nelson (1995). &rparison of methods for self-
adaptation in evolutionary algorithmi.oSystems 36, 157-166.

Schwefel, H.-P. (1995Fvolution and Optimum Seeking. New York: Wiley.

11

Smith, J. & T. Fogarty (1996 a). Adaptively paraenzted evolutionary systems: self
adaptive recombination and mutation in geneticratigm. In: Proceedings of thé'4

conference on parallel problem solving from natdeel-450. Eds H.-M. Voigt, W.
Ebeling, I. Rechenberg & H.-P. Schwefel. liecture Notesin Computer Science

1141. Berlin: Springer.
Srinivas, M. & L.M. Patnaik (1994). Adaptive prohlgies of crossover and mutation in

genetic algorithmd EEE Transactions on Systems, Man and Cybernetics 24(4), 17-26.
Ursem, Rasmus K. (2003Ylodels for Evolutionary Algorithms and Their Applicationsin

System Identification and Control Optimization (PhD Dissertation). A Dissertation

Presented to the Faculty of Science of the UnityecdiAarhus in Partial Fulfillment

of the Requirements for the PhD Degree. Departme@omputer Science, University

of Aarhus, Denmark.

12

