
Ghodrat Moghadampour, PhD
Vaasa University of Applied Sciences

Vaasa, Finland
Mobile: +358407616223

Fax: +358 6 326 3112
E-Mail: mg@puv.fi

Keywords
Evolutionary algorithms, genetic algorithms, parameter control, adaptation, mutation

Abstract
Evolutionary algorithms are affected by more parameters than optimization methods typically.
This is at the same time a source of their robustness as well as a source of frustration in
designing them. Adaptation can be used not only for finding solutions to a given problem, but
also for tuning genetic algorithms to the particular problem.

Adaptation can be applied to problems as well as to evolutionary processes. In the first case
adaptation modifies some components of genetic algorithms to provide an appropriate form of
the algorithm, which meets the nature of the given problem. These components could be any
of representation, crossover, mutation and selection. In the second case, adaptation suggests a
way to tune the parameters of the changing configuration of genetic algorithms while solving
the problem.

In this paper a brief review of adaptation techniques is provided and some new techniques to
implement adaptation in the mutation process are presented.

1. Introduction
Evolutionary algorithms are heuristic algorithms, which imitate the natural evolutionary
process and try to build better solutions by gradually improving present solution candidates.
They are mainly used to solve problems which are hard to solve in conventional ways or there
is no pre-known solution for them. In an evolutionary algorithm 1) problems are described by
a set of parameters, 2) parameters are interpreted as a set of artificial genes, 3) genes are
considered as blueprints of individuals and 4) evolution is applied to individuals (Fogel,
Owens & Walsh 1966; Rechenberg 1973; Holland 1975; Krink 2005).

It is generally accepted that any evolutionary algorithm must have five basic components: 1) a
genetic representation of a number of solutions to the problem, 2) a way to create an initial
population of solutions, 3) an evaluation function for rating solutions in terms of their
“fitness”, 4) “genetic” operators that alter the genetic composition of offspring during
reproduction, 5) values for the parameters, e.g. population size, probabilities of applying
genetic operators (Michalewicz 1996).

Genetic algorithm is one kind of evolutionary algorithms, which starts the solution process by
randomly generating the initial population and then refining the present solutions through
natural like operators, like crossover and mutation. The behavior of the genetic algorithm can
be adjusted by parameters, like the size of the initial population, the number of times genetic

 2

operators are applied and how these genetic operators are implemented. Deciding on the best
possible parameter values over the genetic run is a challenging task, which requires even
better and efficient techniques.

2. Genetic Algorithm
Most often genetic algorithms (GAs) have at least the following elements in common:
populations of chromosomes, selection according to fitness, crossover to produce new
offspring, and random mutation of new offspring. A simple GA works as follows (Mitchell 1998):

1. Start with a randomly generated population of n l-bit strings (chromosomes)
2. Calculate the fitness f(x) of each bit string x in the population
3. Repeat the following steps until n offspring have been created:

i. Select a pair of parent bit strings from the current population, the probability of selection
being an increasing function of fitness. Selection is done “with replacement”, meaning
that the same chromosome can be selected more than once to become a parent.

ii. With probability Pc (crossover probability or crossover rate) cross over the pair at a
randomly chosen point (chosen with uniform probability) to form two offspring. If no
crossover takes place, form two offspring that are exact copies of their respective parents.
In multi-point crossover the crossover rate for a pair of parents is the number of points at
which a crossover takes place.

iii. Mutate the two offspring at each locus with probability pm (the mutation probability or
mutation rate), and place the resulting bit strings in the new population

4. Replace the current population with the new population
5. Go to step 2.

3. Control Parameters
Evolutionary algorithms are affected by more parameters than optimization methods typically. This is
at the same time a source of their robustness as well as a source of frustration in designing them
(Michalewicz & Fogel 2004).

Adaptation can be used not only for finding solutions to a given problem, but also for tuning genetic
algorithms to the particular problem (Gen et al. 2000). Adaptation can be applied to problems as well
as to evolutionary processes. In the first case, adaptation modifies some components of genetic
algorithms to provide an appropriate form of the algorithm, which meets the nature of the given
problem. These components could be any of representation, crossover, mutation and selection.

In the second case, adaptation suggests a way to tune the parameters of the changing configuration of
genetic algorithms while solving the problem (Gen et al. 2000). Some of such parameters are:
population size and structure, like subpopulations, genome representation (floating point, binary, parse
tree, matrix), precision and length, crossover type (arithmetic, -point, etc.), the number of crossover
points and probability, mutation type (uniform, Gaussian, etc.), mutation variance and probability,
selection type (tournament, proportional, etc.), tournament size.

The challenge is that optimal parameters of an EA are problem dependent and there is a large set of
possible EA settings. The No-Free-Lunch theorem implies that no set of parameters for an EA is
superior on all problems (Krink 2005). Finding the right parameter values is a time-consuming task
and it has been the subject of many researches.

The main criteria for classifying parameter setting methods are: 1) what is changed, 2) how the change
is made. The first criterion refers to the components of the evolutionary algorithm and consists of six

 3

categories: 1) representation, 2) evaluation function, 3) variation operators (mutation and
recombination), 4) selection, 5) replacement, 6) population.
The second criterion refers to the parameter setting methods, which can be divided to three main
types: 1) deterministic (or fixed) parameter control (also called parameter tuning) in which the
parameter-altering transformations takes no input variables related to the progress of search method, 2)
adaptive (also called explicitly adaptive) parameter control in which there is some form of feedback
from the search, 3) self-adaptive (also called implicitly adaptive) parameter control in which the
parameters to be adapted are encoded into the chromosomes and undergo mutation and recombination
(Eiben, Hinterding & Michalewicz 1999).

Since all components of the algorithms have parameters, which need to be set to reasonable
values, manual tuning is impossible to avoid completely even in adaptive control techniques.
Furthermore, most advanced parameter control techniques also have parameters. However,
adaptive parameter control seems to be still worthy due to the following facts: 1) the
performance of parameter-varying algorithms is better, 2) since the control technique is
usually more robust with respect to parameter sensitivity tuning; the control method is often
easier than tuning the actual parameters (Ursem 2003).

4. Mutation Operators

Mutation is a bit reversal event that occurs with small probabilities mp per bit. Efforts to tune

the mutation probability have resulted to different values and hence leaving practitioners in
ambiguity. As results of tuning “optimal” mutation rate, the best rate found to be 0.001pm ≈

(De Jong 1975), 0.01pm ≈ (Grefenstette 1986), []0.005,0.01mp ∈ (Schaffer et al. 1989) and

1
mp L= (Mühlenbein 1992), where L is the length of the bit string (Michalewicz et al.

2004).

Different techniques for updating the mutation rate over time have also been presented by
different researchers. A time dependent schedule for controlling the mutation is presented in
(Laumanns, Rudolph & Schwefel 1998; Laumanns, Rudolph & Schwefel 2001). Here the
mutation step sizes are discounted by a constant factor each time an offspring is produced.
Fogarty presented three ideas for controlling the mutation rate in bit-flip mutation (Fogarty
1989; Ursem 2003). The first idea was to control the mutation rate ()mp t by an exponential

decreasing function of the generation number t according to the following formula:

1 0.11375
()

240 2m t
p t = + . (1)

The second idea was to have different mutation rates for different bits in the chromosome.
More precisely to have high mutation rates on the least significant bits and low mutation rates
for the most significant bits according to the following formula:

1

0.3528
()

2m i
p i −= , (2)

where i is the bit number and 1,2,...10i = , with 1i = being the least significant bit.

The third idea was to combine two previous formulas and control the mutation rates according
to the following formula:

 4

1 1

28 0.4026
(,)

1905.2 2m i t i
p t i − + −= + . (3)

Fogarty compared these three schemes with a scheme using constant mutation rate of
0.01mp = and noticed that the combination of varying across both generations and bit

number was the best of all four techniques (Ursem 2003).

A theoretically optimal schedule for deterministically changing mp for the counting-ones

function is presented in (Hesser & Männer 1991; Eiben et al. 1999; Michalewicz et al. 2004).
Here, the value for mp is defined in the following way over time t :

exp()
2()m

t

p t
L

γ
α
β λ

−

= × , (4)

where α , β and γ are constants, λ is the population size, L is the string length and t is the
generation number.

The function to control the decrease of mp is defined as a linear decreasing function from 0.5

to 1
L in generation T in (Bäck & Schütz 1996; Eiben et al. 1999 and Ursem 2003). The

value of ()mp t is constrained so that (0) 0.5mp = ,
1

()mp T
L

= and otherwise:

1
2

() 2 , if 0 .m

L
p t t t T

T

−− = + ≤ ≤ 
 

 (5)

An optimal schedule for decreasing the mutation rate as a function of the distance to the
optimum is defined in (Bäck 1992 a; Eiben et al. 1999; Michalewicz et al. 2004) in the
following way:

1
(())

2(() 1)mp f x
f x L

≈
+ −

. (6)

The idea of varying the mutation rate over both bit index number and generation was revisited
and implemented in slightly different form from the traditional bit-flip mutation operation in
(Janikow et al. 1991; Ursem 2003). The new mutation operator was called non-uniform
mutation for binary encoding and was derived from the version used for real encoding. The
operator mutates the ' thk (1,2,3,...k q=) binary encoded parameter kx of a candidate

solution 1x (,..., ,...,)k qx x x= according to:

1 (, ()), if a random binary digit is 0

(, ()), if a random binary digit is 1

t
t k k
k t

k k

x t righ k x
x

x t x left k
+  + ∆ −

=  − ∆ −
. (7)

The functions ()left k and ()right k determine the valid range [](), ()left k right k for each point

kx in the search space, where other variables ix (1,..., 1, 1,...,i k k q= − +) remain fixed. The

function (,)t y∆ returns a value in the range []0, y so that the probability of (,)t y∆ being

close to 0 increases as the generation number, t increases. This property causes this operator

 5

to search the space uniformly initially, when t is small, and very locally at later stages.
Function (,)t y∆ is defined as:

(,) (1)bt
t y yr

T
∆ = − , (8)

where r is a random number from [0, 1], T is the maximal generation number, and b is a
system parameter determining the degree of non-uniformity.

Controlling the variance in Gaussian mutation is very critical in successful application of real-
encoded EAs. The standard approach for doing this is to set the variance of the mutation
according to a monotonic decreasing function depending on the generation number. These
heuristic functions are usually developed by scrutinizing the experimental data and forming a
hypothesis from the relationship between the performance of the algorithm and how the
parameters were changed (Ursem 2003).

A classical adaptive method for changing the mutation step size is Rechenberg’s 1/5 rule for
Gaussian mutation in (1+1)-EAs presented in (Rechenberg 1973; Eiben et al. 1999). This rule
states that the ratio of successful mutations to all mutations should be 1/5 measured over a
number of generations. The standard deviation σ should increase if the ratio is above 1/5,
decrease if it is below, and remain unchanged if it is 1/5 (Ursem 2003). It is assumed that
maximum progress can be achieved through mutation step sizes leading to a success
probability of approximately 20%.

The ratio between crossovers and mutations is regulated based on their performance in
(Julstrom 1995; Eiben et al. 1999). Both operators are used separately to create an offspring,
and the algorithm keeps a tree of their recent contributions to the new offspring and rewards
them accordingly.

Mutation rates in a parallel GA are adapted with a farming model in (Lis 1996; Eiben et al.
1999). Probability of mutation, crossover and the population size in an algorithm of parallel
farming model has been adapted in (Lis & Lis 1996; Eiben et al. 1999). They use parallel
populations and each of them has one value, out of a possible three different values for mp ,

cp and the population size. The populations are compared after a certain period of time, and

then the values for mp , cp and the population size are shifted one level towards the values of

the most successful population (Eiben et al. 1999).

Gaussian mutation of a real-encoded variable ix is usually performed according to (Ursem

2003):

(0, ())i i ix x N tσ′ = + . (9)

The traditional approach to set the mutation variance is using either a linear or an
exponentially decreasing function such as:

() 1 1i t tσ = + . (10)

Self-adaptive control of mutation step sizes has been reported in (Schwefel 1995; Bäck 1996;
Bäck et al. 1997; Eiben et al. 1999). Mutating a floating-point object variable ix happens in

the following way:

 6

(0,1)i i ix x Nσ′ = + , (11)

where the mean step sizes are modified lognormally:

exp((0,1) (0,1))i i iN Nσ σ τ τ′ ′= + , (12)

where τ and τ ′ are the so-called learning rates. The value of σ can also be modified
normally:

(0,1)i i i Nσ σ ζσ′ = + , (13)

where ζ is a scaling constant (Fogel 1995; Eiben et al. 1999). Empirical evidence suggests
that lognormal perturbation of mutation rates is preferable to Gaussian perturbations on fixed-
length real-valued representations (Saravanan & Fogel 1994; Saravanan, Fogel & Nelson
1995; Eiben et al. 1999). However, a slight advantage of Gaussian perturbations over
lognormal updates for self-adaptively evolving finite state machines is reported in (Angeline,
Fogel & Fogel 1996; Eiben et al. 1999).

Significant improvement can be achieved by controlling the mutation variance by other
techniques than a strictly decreasing function (Ursem 2003). The so-called sand pile model
was used to generate power-law distributed numbers for controlling the variance in Gaussian
mutation (Krink, Thomsen & Rickers 2000; Ursem 2003). The sandpile model is a simple
approach to study many complex phenomena found in nature and is an example of how self-
organized criticality (SOC) can be generated by very simple means (Bak 1996; Ursem 2003).

Self-adaptation of the mutation step size for optimizing numeric functions in a real valued GA
is applied in (Hinterding 1995; Eiben et al. 1999). In another experimentation individuals are
replaced by their offspring. Probabilities of crossover and mutation for each chromosome are
added to its bit string and adapted in proportion to the population maximum and mean fitness
(Srinivas & Patnaik 1994; Eiben et al. 1999). In (Kursawe 1991; Laumanns et al. 2001) the
selection criterion changes randomly over time. To make individuals cope with the changing
environment they are supplied with a set of step sizes for each objective function through
polyploidy. Polyploidy is a situation when the number of chromosomes in a cell becomes
doubled. This can happen by a mutation that simply makes two copies. It can also happen
when the chromosomes from two different species are mixed.

The mutation rate of GAs can also be self-adapted by adding the rate of mutating mp , coded

in bits, to every individual. Then the new mp is used to mutate the individual’s object

variables. This is based on the idea that better mp rates will produce better offspring and then

hitchhike on their improved children to new generations, while bad rates will die out (Bäck
1992 a, Bäck 1992 b; Eiben et al. 1999). The same idea with an implementation of 1/5 success
rule for mutation has been applied on a steady-state GA in (Smith & Fogarty 1996; Eiben et
al. 1999).

Laumanns et al. (2001) discuss the problem of controlling mutation strength in multi-
objective evolutionary algorithms and its implications for the convergence to the Pareto set. A
Pareto set is defined to be the set of all Pareto optimal decision vectors and a Pareto optimal
vector is defined to be a vector, which makes the optimization function converge the most.
Convergence here refers to the iterative approach of populations to the Pareto set of the
underlying optimization problem.

 7

An algorithm should ensure convergence to Pareto set and provide a “good” distribution of
solutions in order to find or to approximate the set of efficient or Pareto-optimal solutions.
Fitness assignment methods based on the notion of dominance seem to produce better
solution distributions than plain aggregating methods. Density based selection methods
maintain diversity and the use of elitism speeds up the search in the direction of the Pareto set
and ensure convergence properties. (Laumanns, Zitzler & Thiele 2001; Rudolph & Agapie
2000; Laumanns et al. 2001). However, virtually all implementations focusing on the role the
variation operators in evolutionary multi-objective optimization use standard non-adaptive
operators from the single objective case (Laumanns et al. 2001).

Approximating the Pareto set of a multi-objective optimization problem by evolutionary
algorithms faces two main problems:

1. The velocity and reliability of convergence to the Pareto set, same as in single
objective optimization.

2. Distribution of solutions, caused by the existence of multiple Preto-optimal solutions
in the multi-objective case.

Laumanns et al. (2001) present the so-called Predator-Prey model. In this model predator
individuals move across the spatial structure so that they delete the worst prey individual of
their neighborhood according to their associated objective function. The authors present two
adaptation rules capable of increasing the step sizes on need for the model: 1) the standard
mutative self-adaptation and 2) self-adaptation through recombination frequency. These rules
have worked well. The model converges to the Pareto set due to the superior success
probability of single criteria selection in the vicinity of the Pareto set, where it gets
increasingly difficult to make cooperative steps from one mutation alone.

The second method, self-adaptation through recombination frequency, combines the implicit
evaluation of good “inner models” through fitness evaluation and selection with a fixed but
flexible schedule depending on the recombination frequency. In this way all individuals use
bigger step sizes for the early offspring and smaller for later ones. The mutation of the step
sizes is done deterministically according to the rule:

0(1) (),d dt tσ γ σ−+ =] [0,1γ ∈ . (14)

Here d denotes the number of descendants an individual has produced so far. The delay
parameter, 0d determines the number of descendants that must be created before smaller step

sizes are passed on to the offspring. The adaptation rate can be controlled by γ . In this
schedule for step sizes just one order of magnitude greater than the optimal ones the success
rate rapidly goes to zero. Therefore it is a matter of time until appropriate step sizes will be
found.

5. Adaptive Mutation Operators
One major problem with the classical implementation of binary mutation, the multiple point
mutation or the crossover operator is that it is difficult to control their effect or to restrict
changes caused by them within certain limits.

Therefore, several techniques are developed to implement the genetic operators intelligently
so that the resulting modifications on the binary string will cause changes in the real values

 8

within the desired limits. This idea is implemented so that the real value of the variable is
randomly changed within the desired limits and the modified value then is converted to the
binary representation and stored as the value of the variable. In this way we can cause more
intelligent mutations in the bit strings and make sure that changes in real values are within the
desired bounds.

Apparently, changes of different magnitudes are required at different stages of the
evolutionary process. Thus, two types of decimal mutation operators have been implemented:

1. For modifying variables with integer values. The bounds for the absolute values of
such changes are at least 1 and at most the integer part of the real value representation
of the variable. This means that the upper bound of the range may vary even for each
variable of the same individual. The randomly selected mutation value may be either
positive or negative. Thus, if the integer part of the variable is int(variable) , the

integer mutation range is 1, int()variable±    .

2. For modifying variables with values from the range ()0,1 . The lower bound for the

absolute value of such changes is determined by the required precision of the real
value presentation of the variable, like 610− . The upper bound for the absolute value of
such changes is determined by decimal part of the variable. Here also the mutation
value can be either positive or negative. Thus, if the number of digits after the decimal
point for a variable is precision()variable , and the decimal part of the variable is
decimal()variable , the range for the real mutation values is

precision(var)10 , decimal()iable variable− ±   .

5.1 The Integer Mutation Operator

The integer mutation (IM) operator mutates the individuals of the population in relatively
great magnitudes. During this operation an integer mutation value Γ is selected randomly
from the following range:

 1, int()variableΓ ∈ ±    (15)

and added to the variable under mutation. Here, int()variable stands for the absolute value of

the integer part of the variable. Clearly, this integer part does not necessarily cover the whole
range of the variable. To avoid wasting resources special care is taken to make sure that the
generated random number is not 0. Thus, the upper bound for the integer mutation value is
different for each variable and is defined by the absolute value of the integer part of the
variable. This will make the process more flexible and intelligent.

If the upper bound of the mutation value is set to a fixed value, the operator becomes
inefficient or the probability for its failure will rise. For instance, if the optimal value of a
variable is 0.05 and its present value 80.64, we will need 80 successful integer mutations of
magnitude 1 in order to get close to the optimal value of the variable. However, if the
magnitude of the integer mutation value can be dynamically determined by the magnitude of

 9

the variable, the operator will have a much greater chance to improve the value of the variable
dramatically in a short time.

During this operation for each variable in the individual, first a Boolean value is randomly
generated that determines whether the mutation operation for the variable at hand should take
place or not. If the Boolean value is true, then a randomly generated integer number within
the specified bounds is added to the decimal value of the variable. This process is repeated for
each variable of the individual separately and the binary representation of the resulting
offspring is updated. The offspring is then evaluated and put through the survivor selection
procedure. Once this process is ready, the new offspring goes through the variable
replacement operator for possible improvement. Next, the offspring, which has possibly been
modified by the variable replacement operator, goes through the survivor selection procedure
for possible substitution. There is no fixed rate for this operator. All population members go
through this operator at least once. This operation is combined with the variable replacement
operator described previously. After going through the variable replacement operator, the
offspring goes again through the survivor selection procedure for evaluation and possible
selection.

5.2 The Decimal Mutation Operator

The decimal mutation (DM) operator is used in order to implement changes of smaller
magnitudes on individuals. During this operation non-zero decimal numbers in the specific
range are randomly generated and added to the randomly selected variables in the individual.
The upper bound for the decimal mutation values is determined by the absolute value of the
decimal part of variables. If the decimal part of a variable is denoted by)decimal(variable ,

the maximum distance of the mutation values from 0 is decimal()variable . The lower bound

of the mutation range is determined by the number of digits after the decimal point. Thus, if
)precision(variable shows the number of required decimal places of a variable, the decimal

mutation value is determined in the following way:

precision() 10 , decimal()variable variableϕ − ∈ ±   (16)

The difference between this operator and the integer mutation operator is the way the
mutation value is determined. Otherwise, these operators are similar. Figure 17 provides the
pseudo code for the operator.

6. Experimentation and Conclusions

The integer mutation operator, which can be compared to the multiple point mutation
operator, selects randomly an integer mutation number between 0 and the magnitude of the
integer part of the variable and randomly decides whether to add or subtract the mutation
number from the variable.

The decimal mutation operator selects randomly a decimal mutation value greater than 0 and
less than 1. Then it randomly decides whether to add or subtract the mutation decimal value
from the variable.

 10

These operators were tested on 44 test problems in 2200 runs. Experimentation showed that
the most efficient operators are the integer mutation and the decimal mutation operators,
which were able to improve the population fitness values the most.

7. References

Angeline, P.J., D.B. Fogel & L.J. Fogel (1996). A comparison of self-adaptation Methods for

finite state machines in dynamic environments. In: Proceedings of the 5th Annual
Conference on Evolutionary Programming. Eds L.J. Fogel, P.J. Angeline & T. Bäck,
MIT Press.

Bäck, T. & M. Schütz (1996). Intelligent mutation rate control in canonical genetic
algorithms. In: Foundations of intelligent systems, 1079. In: Lecture Notes in Artificial
Intelligence, 158-167. Eds Z. Ras & M. Michalewicz. Springer-Verlag.

Bäck, T. (1992 a). The interaction of mutation rate, selection, and self-adaptation within a
genetic algorithm. In: Proceedings of the 2nd Conference on Parallel Problem Solving
from Nature, 85-94. Eds R. Männer & B. Manderick, B. North-Holland.

Bäck, T. (1992 b). Self-adaptation in genetic algorithms. In: Toward a Practice of
Autonomous Systems: Proceedings of the 1st European Conference on Artificial Life,
263-271. Eds F. J. Varela & P. Bourgine. MIT Press.

Bäck, Thomas, Ulrich Hammel & Hans-Paul Schwefel (1997). Evolutionary computation:
comments on the history and current state. In: Handbook of Evolutionary
Computation. Eds Thomas Bäck, D. B. Fogel & Z. Michalewicz. New York: Oxford
University Press.

Bak, P. (1996). How Nature Works. Copernicus, Springer-Verlag, 1st edition.
Eiben, Ágoston E., Robert Hinterding & Zbigniew Michalewicz (1999). Parameter control in

evolutionary algorithms. IEEE Transactions on Evolutionary Computation 3(2), 124-
141. This paper has won the 2001 IEEE Transactions on Evolutionary Computation
Outstanding Paper.

Fogarty, T. (1989). Varying the probability of mutation in the genetic algorithm. In:
Proceedings of the 3rd International Conference on Genetic Algorithms, 104-109. Ed.
J.D. Schaffer. Morgan Kaufmann.

Fogel, D.B. (1995). Evolutionary Computation. IEEE Press.
Fogel, L. J., A.J. Owens & M.J. Walsh (1966). Artificial Intelligence through Simulated

Evolution. Chichester, UK: John Wiley.
Hesser, J. & R. Männer (1991). Towards an optimal mutation probability for genetic

algorithms. In: Proceedings of the 1st conference on parallel problem solving from
nature. Eds H.-P. Schwefel & R. Männer. In: Lecture Notes in Computer Science 496,
23-32. Springer-Verlag.

Hinterding, R. (1995). Gaussian mutation and self-adaptation in numeric genetic algorithms.
In: Proceedings of the 2nd IEEE Conference on Evolutionary Computation, 384-389.
IEEE Press.

Holland, J. H. (1975). Adaptation in Natural and Artificial Systems. Ann Arbor: MI:
University of Michigan Press.

Janikow, C. Z. & Z. Michalewicz (1991). An experimental comparison of binary and floating-
point representations in genetic algorithms. In: Proceedings of the Fourth
International Conference on Genetic Algorithms. Eds R. K. Belew & L. B. Booker.
Morgan Kaufmann.

Julstrom, B.A. (1995). What have you done lately for me? Adapting operator probabilities in
a steady-state genetic algorithm. In: Proceedings of the 6th International Conference
on Genetic Algorithms, 81-87. Ed. L. Eshelman. Morgan Kaufmann.

 11

Krink, T., R. Thomsen & P. Rickers (2000). Applying self-organized criticality to
evolutionary algorithms. In: Parallel Problem Solving from Nature VI (PPSN-2000),
1, 375-384. Eds Schoenauer et al.

Krink, Thiemo, Bogdan Filipič & Gary B. Fogel (2004). Noisy Optimization Problems- A
Particular Challenge for Differential Evolution? Available at: http://www.natural-
selection.com/Library/2004/CEC04_Noisy.pdf. Checked in December 2005.

Kursawe, Frank (1991). A variant of evolution strategies for vector optimization. In: Parallel
Problem Solving from Nature, 193-197. Eds H.-P. Schwefel & R. Männer. Berlin:
Springer.

Laumanns, Marco, Eckart Zitzler & Lothar Thiele (2001). On the effects of archiving, elitism
and density based selectio in evolutionary multi-objective optimization. In:
Evolutionary multi-criterion optimization (emo 2001). Ed. E. Zitzler. In: Lecture Notes
in Computer Science 1993, 181-196. Berlin: Springer-Verlag.

Laumanns, Marco, Günter Rudolph & Hans-Paul Schwefel (1998). A spatial predator-prey
approach to multi-objective optimization: a preliminary study. In: Parallel Problem
Solving From Nature (PPSN-V), 241-249. Eds Agoston E. Eiben et al. Berlin:
Springer.

Laumanns, Marco, Günter Rudolph & Hans-Paul Schwefel (2001). Mutation control and
convergence in evolutionary multi-objective optimization. In: 7th International
Conference on Soft Computing MENDEL 2001, Brno, Czech Republic, June 6-8.

Laumanns, Marco, Günter Rudolph & Hans-Paul Schwefel (2001). Mutation control and
convergence in evolutionary multi-objective optimization. In: 7th International
Conference on Soft Computing MENDEL 2001, Brno, Czech Republic, June 6-8.

Lis, J. & M. Lis (1996). Self-adapting parallel genetic algorithm with the dynamic mutation
probability, crossover rate and population size. In: Proceedings of the 1st Polish
National Conference on Evolutionary Computation, 324-329. Ed. J. Arabas. Oficina
Wydawnica Politechniki Warszawskiej.

Lis, J. (1996). Parallel Genetic algorithm with dynamic parameter control. In: Proceedings of
the 3rd IEEE Conference on Evolutionary Computation, 324-329. IEEE Press.

Michalewicz, Zbigniew & David B. Fogel (2004). How to Solve It: Modern Heuristics.
Second, Revised and Extended Edition. Germany: Springer-Verlag Berlin Heidelberg.
ISBN 3-540-22494-7.

Michalewicz, Zbigniew & David B. Fogel (2004). How to Solve It: Modern Heuristics.
Second, Revised and Extended Edition. Germany: Springer-Verlag Berlin Heidelberg.
ISBN 3-540-22494-7.

Michalewicz, Zbigniew (1996). Genetic Algorithms + Data Structures = Evolution
Programs. Third, Revised and Extended Edition. USA: Springer. ISBN 3-540-60676-
9.

Mitchell, Melanie (1998). An Introducton to Genetic Algorithms. United States of America: A
Bradford Book. First MIT Press Paperback Edition.

Mühlenbein, H. (1992). How genetic algorithms really work: 1. mutation and hill-climbing.
In: Parallel Problem Solving from Nature 2. Eds R. Männer & B. Manderick. North-
Holland.

Rudolph, G. & A. Agapie (2000). Convergence properties of some multi-objective
evolutionary algorithms. In: Congress on Evolutionary Computation (CEC 2000) 2,
1010-1016. Piscataway, NJ: IEEE Press.

Saravanan, N., D.B. Fogel & K.M. Nelson (1995). A comparison of methods for self-
adaptation in evolutionary algorithms. BioSystems 36, 157-166.

Schwefel, H.-P. (1995). Evolution and Optimum Seeking. New York: Wiley.

 12

Smith, J. & T. Fogarty (1996 a). Adaptively parameterized evolutionary systems: self
adaptive recombination and mutation in genetic algorithm. In: Proceedings of the 4th
conference on parallel problem solving from nature, 441-450. Eds H.-M. Voigt, W.
Ebeling, I. Rechenberg & H.-P. Schwefel. In: Lecture Notes in Computer Science
1141. Berlin: Springer.

Srinivas, M. & L.M. Patnaik (1994). Adaptive probabilities of crossover and mutation in
genetic algorithms. IEEE Transactions on Systems, Man and Cybernetics 24(4), 17-26.

Ursem, Rasmus K. (2003). Models for Evolutionary Algorithms and Their Applications in
System Identification and Control Optimization (PhD Dissertation). A Dissertation
Presented to the Faculty of Science of the University of Aarhus in Partial Fulfillment
of the Requirements for the PhD Degree. Department of Computer Science, University
of Aarhus, Denmark.

