
IWES 2007, Vaasa, Finland

1

Adaptation in Genetic Algorithms

Ghodrat Moghadampour

Vaasa University of Applied Sciences

Vaasa

Finland

IWES 2007, Vaasa, Finland

2

Outline

Evolutionary Algorithms

Genetic Algorithms

Parameters

Adaptation

Mutation Operator

Adaptation for mutation operator

Intelligent mutation operators

IWES 2007, Vaasa, Finland

3

Motivation

In the real world, there are numerous hard
problems, which cannot be solved with
conventional techniques within reasonable
time, like optimization problems:

Conventional techniques require rigid
assumptions, like convexity, linearity,
differentiability, explicitly defined
objectives and so on.

2

1
1

1 100
(100) cos() 1

4000

n
n

i
i i

i

x
x

i=
=

−
− − + 

IWES 2007, Vaasa, Finland

4

Evolutionary Algorithms

It is generally accepted that any
evolutionary algorithm must have five basic
components:
1. a genetic representation of a number of

solutions to the problem

2. a way to create an initial population of solutions

3. an evaluation function for rating solutions in
terms of their “fitness”

4. “genetic” operators that alter the genetic
composition of offspring during reproduction

5. values for the parameters, e.g. population size,
probabilities of applying genetic operators

IWES 2007, Vaasa, Finland

5

Purpose of Evolutionary Algorithms

Classical optimization problems are more efficient

in solving linear, quadratic, strongly convex,

unimodal, separable and many other special

problems.

On the other hand, EAs do not give up so early when

discontinuous, nondifferentiable, multimodal, noisy

and otherwise unconventional response surfaces are

involved.

EAs show inefficiency on the classes of simple

problems, but the effectiveness or robustness of

them extends to a broader field of applications.

IWES 2007, Vaasa, Finland

6

Genetic Algorithms

A simple GA works as follows:

1. Start with a randomly generated
population of n individuals

2. Calculate the fitness f(x) of each
individual in the population

3. Repeat the following steps until a new
population is created:

i. Select a pair of parent from the current
population

IWES 2007, Vaasa, Finland

7

Genetic Algorithms

ii. Cross over the pair with crossover probability

Pc at a randomly chosen point to form two

offspring

iii. Mutate the two offspring at each locus with

probability Pm and place the resulting

individuals in the new population

4. Replace the current population with the

new population

5. While the termination condition is false go

to step 2.

IWES 2007, Vaasa, Finland

8

     •  

 •     • 

       

…

10110001

11111000

00011010

…

-1.233011, 2.45612, 8.309812

14.840269,7.901482,-6.614903

10.710982,-42.002391,31.910283

…

Representation

IWES 2007, Vaasa, Finland

9

Evolutionary Process

     •  

 •     • 

       

…

       •

IWES 2007, Vaasa, Finland

10

Parameters in Evolutionary Algorithms

Evolutionary algorithms are affected by

more parameters than optimization methods

typically.

This is at the same time a source of their

robustness as well as a source of frustration

in designing them.

Adaptation can be used not only for finding

solutions to a given problem, but also for

tuning genetic algorithms to the particular

problem

IWES 2007, Vaasa, Finland

11

Adaptation

Adaptation can be applied to problems as

well as to evolutionary processes.

• In the first case, adaptation modifies some

components of genetic algorithms to provide an

appropriate form of the algorithm, which meets

the nature of the given problem.

• These components could be any of

representation, crossover, mutation and

selection.

IWES 2007, Vaasa, Finland

12

Adaptation

In the second case, adaptation suggests a way
to tune the parameters of the changing
configuration of genetic algorithms while
solving the problem.

Some of such parameters are:
• population size and structure, like subpopulations

• genome representation (floating point, binary,
parse tree, matrix), precision and length

• crossover type (arithmetic, -point, etc.), the
number of crossover points and probability

• mutation type (uniform, Gaussian, etc.), mutation
variance and probability

• selection type (tournament, proportional, etc.),
tournament size.

IWES 2007, Vaasa, Finland

13

Optimal Parameters

The challenge is that optimal parameters of

an EA are problem dependent and there is a

large set of possible EA settings.

The No-Free-Lunch theorem implies that no

set of parameters for an EA is superior on all

problems.

Finding the right parameter values is a time-

consuming task and it has been the subject

of many researches.

IWES 2007, Vaasa, Finland

14

Parameter Setting Methods

The main criteria for classifying parameter

setting methods are:

1) what is changed:

• representation

• evaluation function

• variation operators (mutation and

recombination)

• selection

• replacement

• population

IWES 2007, Vaasa, Finland

15

Parameter Setting Methods

2) How the change is made:
deterministic (or fixed) parameter control
(parameter tuning) in which the parameter-altering
transformations takes no input variables related to
the progress of search method

adaptive (also called explicitly adaptive) parameter
control in which there is some form of feedback
from the search

self-adaptive (implicitly adaptive) parameter
control in which the parameters to be adapted are
encoded into the chromosomes and undergo
mutation and recombination

IWES 2007, Vaasa, Finland

16

Mutation

1 0 0 1 1 1 0 0 0 0 0 0 0 1 1

0

0 0 0 1 1 1 0 0 0 0 0 0 0 1 1 0

Real Value Mutation:

6.290351 6.290102

10.95

-39.05

Mutation is a bit reversal event that occurs with
small probabilities per bit.

-50≤x≤50

Binary Mutation:

IWES 2007, Vaasa, Finland

17

Mutation Operators

Efforts to tune the mutation probability
have resulted to different values and hence
leaving practitioners in ambiguity.

As results of tuning “optimal” mutation rate,
the best rate found to be Pm=0.001 (De
Jong 1975), Pm=0.01(Grefenstette 1986),
0.005≤Pm≤0.01 (Schaffer et al. 1989) and
Pm=1/L (Mühlenbein 1992), where L is the
length of the bit string (Michalewicz et al.
2004).

IWES 2007, Vaasa, Finland

18

Adaptation for Mutation Rate

Controlling the mutation rate in bit-flip

mutation (Fogarty 1989; Ursem 2003):

1 0.11375
()

240 2
m t

p t = +

IWES 2007, Vaasa, Finland

19

Adaptation for Mutation Rate

A theoretically optimal schedule for

deterministically changing Pm for the

counting-ones function is presented in

(Hesser & Männer 1991; Eiben et al. 1999;

Michalewicz et al. 2004):

exp()
2()m

t

p t
L




 

−

= 

IWES 2007, Vaasa, Finland

20

Adaptation for Mutation Rate

An optimal schedule for decreasing the

mutation rate as a function of the distance

to the optimum is defined in (Bäck 1992 a;

Eiben et al. 1999; Michalewicz et al. 2004) in

the following way:

1
(())

2(() 1)
mp f x

f x L


+ −

IWES 2007, Vaasa, Finland

21

Adaptation for Mutation Rate

Controlling the variance in Gaussian
mutation is very critical in successful
application of real-encoded EAs.

The standard approach for doing this is to
set the variance of the mutation according
to a monotonic decreasing function
depending on the generation number.

IWES 2007, Vaasa, Finland

22

Adaptation for Mutation Rate

Gaussian mutation of a real-encoded variable is
usually performed according to:

(0, ())i i ix x N t = +

The mutation variance is traditionally set using
either a linear or an exponentially decreasing
function such as:

() 1 1i t t = +

IWES 2007, Vaasa, Finland

23

Adaptation for Mutation Rate

The mutation rate Pm of GAs can also be self-
adapted by adding the rate of mutating , coded
in bits, to every individual.

Then the new is used to mutate the individual’s
object variables.

This is based on the idea that better Pm rates
will produce better offspring and then hitchhike
on their improved children to new generations,
while bad rates will die out

IWES 2007, Vaasa, Finland

24

Adaptation for Mutation Rate

Mutating a floating-point object variable in a

self-adaptive way may happen in the following

way:

(0,1)i i ix x N = +

where the mean step sizes can be modified

for instance lognormally:

exp((0,1) (0,1))i i iN N    = +

IWES 2007, Vaasa, Finland

25

Intelligent Mutation Operators

Problem with the classical implementation
of binary mutation: it is difficult to control
effect or to restrict changes caused by
multiple point mutation or the crossover
operator within certain limits

Solution: implement the genetic operators
intelligently so that the resulting
modifications on the binary string will cause
changes in the real values within the desired
limits

IWES 2007, Vaasa, Finland

26

Mutation

Binary Mutation:

1 0 0 1 1 1 0 0 0 0 0 0 0 1 1

0

0 0 0 1 1 1 0 0 0 0 0 0 0 1 1 0

Real Value Mutation:

6.290351 6.290102

10.95

-39.05

-50≤x≤50

IWES 2007, Vaasa, Finland

27

Intelligent Mutation Operators

Changes of different magnitudes are required at
different stages of the evolutionary process:

Modifying variables with integer values. The bounds
for the absolute values of such changes are at least
1 and at most the integer part of the real value
representation of the variable.

Modifying variables with values from the range
0<x<1. The lower bound for the absolute value of
such changes is determined by the required
precision of the real value presentation of the
variable, like 10-6. The upper bound for the
absolute value of such changes is determined by
decimal part of the variable.

IWES 2007, Vaasa, Finland

28

Intelligent Mutation Operators

10.792304

10

0.792304

±[10, 10]

Mutation Range

Mutation Range

±[0.000001, 0.792304]

IWES 2007, Vaasa, Finland

29

Intelligent Mutation Operators

4

0.419876

0.000001

0

IWES 2007, Vaasa, Finland

30

Experimentation & Conclusions

These operators were tested on 44 test

problems in 2200 runs.

Experimentation showed that the most

efficient operators are the integer mutation

and the decimal mutation operators, which

were able to improve the population fitness

values the most.

IWES 2007, Vaasa, Finland

31

Thank you!
☺

