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Motivation

In the real world, there are numerous hard 
problems, which cannot be solved with 
conventional techniques within reasonable 
time, like optimization problems:

Conventional techniques require rigid 
assumptions, like convexity, linearity, 
differentiability, explicitly defined 
objectives and so on. 
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Evolutionary Algorithms

It is generally accepted that any 
evolutionary algorithm must have five basic 
components: 
1. a genetic representation of a number of 

solutions to the problem

2. a way to create an initial population of solutions

3. an evaluation function for rating solutions in 
terms of their “fitness”

4. “genetic” operators that alter the genetic 
composition of offspring during reproduction

5. values for the parameters, e.g. population size, 
probabilities of applying genetic operators
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Purpose of Evolutionary Algorithms

Classical optimization problems are more efficient 

in solving linear, quadratic, strongly convex, 

unimodal, separable and many other special 

problems. 

On the other hand, EAs do not give up so early when 

discontinuous, nondifferentiable, multimodal, noisy 

and otherwise unconventional response surfaces are 

involved. 

EAs show inefficiency on the classes of simple 

problems, but the effectiveness or robustness of 

them extends to a broader field of applications.
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Genetic Algorithms

A simple GA works as follows:

1. Start with a randomly generated 
population of n individuals 

2. Calculate the fitness f(x) of each 
individual in the population

3. Repeat the following steps until a new 
population is created:

i. Select a pair of parent from the current 
population
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Genetic Algorithms

ii. Cross over the pair with crossover probability 

Pc at a randomly chosen point to form two 

offspring 

iii. Mutate the two offspring at each locus with 

probability Pm and place the resulting 

individuals in the new population

4. Replace the current population with the 

new population

5. While the termination condition is false go 

to step 2.
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Evolutionary Process
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Parameters in Evolutionary Algorithms

Evolutionary algorithms are affected by 

more parameters than optimization methods 

typically. 

This is at the same time a source of their 

robustness as well as a source of frustration 

in designing them.

Adaptation can be used not only for finding 

solutions to a given problem, but also for 

tuning genetic algorithms to the particular 

problem
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Adaptation

Adaptation can be applied to problems as 

well as to evolutionary processes. 

• In the first case, adaptation modifies some 

components of genetic algorithms to provide an 

appropriate form of the algorithm, which meets 

the nature of the given problem. 

• These components could be any of 

representation, crossover, mutation and 

selection.
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Adaptation

In the second case, adaptation suggests a way 
to tune the parameters of the changing 
configuration of genetic algorithms while 
solving the problem.

Some of such parameters are: 
• population size and structure, like subpopulations

• genome representation (floating point, binary, 
parse tree, matrix), precision and length

• crossover type (arithmetic, -point, etc.), the 
number of crossover points and probability

• mutation type (uniform, Gaussian, etc.), mutation 
variance and probability

• selection type (tournament, proportional, etc.), 
tournament size.
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Optimal Parameters

The challenge is that optimal parameters of 

an EA are problem dependent and there is a 

large set of possible EA settings. 

The No-Free-Lunch theorem implies that no 

set of parameters for an EA is superior on all 

problems.

Finding the right parameter values is a time-

consuming task and it has been the subject 

of many researches.



IWES 2007, Vaasa, Finland

14

Parameter Setting Methods

The main criteria for classifying parameter 

setting methods are:

1) what is changed:

• representation 

• evaluation function 

• variation operators (mutation and 

recombination) 

• selection 

• replacement 

• population
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Parameter Setting Methods

2) How the change is made:
deterministic (or fixed) parameter control 
(parameter tuning) in which the parameter-altering 
transformations takes no input variables related to 
the progress of search method

adaptive (also called explicitly adaptive) parameter 
control in which there is some form of feedback 
from the search 

self-adaptive (implicitly adaptive) parameter 
control in which the parameters to be adapted are 
encoded into the chromosomes and undergo 
mutation and recombination
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Mutation

1 0 0 1 1 1 0 0 0 0 0 0 0 1 1 

0

0 0 0 1 1 1 0 0 0 0 0 0 0 1 1 0

Real Value Mutation:

6.290351 6.290102

10.95

-39.05

Mutation is a bit reversal event that occurs with 
small probabilities  per bit.

-50≤x≤50

Binary Mutation:
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Mutation Operators

Efforts to tune the mutation probability 
have resulted to different values and hence 
leaving practitioners in ambiguity. 

As results of tuning “optimal” mutation rate, 
the best rate found to be Pm=0.001 (De 
Jong 1975), Pm=0.01(Grefenstette 1986), 
0.005≤Pm≤0.01 (Schaffer et al. 1989) and  
Pm=1/L (Mühlenbein 1992), where L is the 
length of the bit string (Michalewicz et al. 
2004). 
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Adaptation for Mutation Rate

Controlling the mutation rate in bit-flip 

mutation (Fogarty 1989; Ursem 2003):

1 0.11375
( )

240 2
m t

p t = +
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Adaptation for Mutation Rate

A theoretically optimal schedule for 

deterministically changing Pm for the 

counting-ones function is presented in 

(Hesser & Männer 1991; Eiben et al. 1999; 

Michalewicz et al. 2004):

exp( )
2( )m
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p t
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
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Adaptation for Mutation Rate

An optimal schedule for decreasing the 

mutation rate as a function of the distance 

to the optimum is defined in (Bäck 1992 a; 

Eiben et al. 1999; Michalewicz et al. 2004) in 

the following way:

1
( ( ))

2( ( ) 1)
mp f x

f x L


+ −
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Adaptation for Mutation Rate

Controlling the variance in Gaussian 
mutation is very critical in successful 
application of real-encoded EAs. 

The standard approach for doing this is to 
set the variance of the mutation according 
to a monotonic decreasing function 
depending on the generation number. 
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Adaptation for Mutation Rate

Gaussian mutation of a real-encoded variable  is 
usually performed according to:

(0, ( ))i i ix x N t = +

The mutation variance is traditionally set using 
either a linear or an exponentially decreasing 
function such as:

( ) 1 1i t t = +
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Adaptation for Mutation Rate

The mutation rate Pm of GAs can also be self-
adapted by adding the rate of mutating , coded 
in bits, to every individual. 

Then the new  is used to mutate the individual’s 
object variables.

This is based on the idea that better Pm rates 
will produce better offspring and then hitchhike 
on their improved children to new generations, 
while bad rates will die out
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Adaptation for Mutation Rate

Mutating a floating-point object variable in a 

self-adaptive way may happen in the following 

way:

(0,1)i i ix x N = +

where the mean step sizes can be modified 

for instance lognormally:

exp( (0,1) (0,1))i i iN N    = +
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Intelligent Mutation Operators

Problem with the classical implementation 
of binary mutation: it is difficult to control 
effect or to restrict changes caused by 
multiple point mutation or the crossover 
operator within certain limits

Solution: implement the genetic operators 
intelligently so that the resulting 
modifications on the binary string will cause 
changes in the real values within the desired 
limits 
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Mutation

Binary Mutation:

1 0 0 1 1 1 0 0 0 0 0 0 0 1 1 

0

0 0 0 1 1 1 0 0 0 0 0 0 0 1 1 0

Real Value Mutation:

6.290351 6.290102

10.95

-39.05

-50≤x≤50
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Intelligent Mutation Operators

Changes of different magnitudes are required at 
different stages of the evolutionary process: 

Modifying variables with integer values. The bounds 
for the absolute values of such changes are at least 
1 and at most the integer part of the real value 
representation of the variable. 

Modifying variables with values from the range 
0<x<1. The lower bound for the absolute value of 
such changes is determined by the required 
precision of the real value presentation of the 
variable, like 10-6. The upper bound for the 
absolute value of such changes is determined by 
decimal part of the variable. 
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Intelligent Mutation Operators

10.792304

10

0.792304

±[10, 10]

Mutation Range

Mutation Range

±[0.000001, 0.792304]
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Intelligent Mutation Operators

4

0.419876

0.000001

0
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Experimentation & Conclusions

These operators were tested on 44 test 

problems in 2200 runs. 

Experimentation showed that the most 

efficient operators are the integer mutation 

and the decimal mutation operators, which 

were able to improve the population fitness 

values the most.
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Thank you!
☺


