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1 Abstract

Real-Time Java is getting more and more popular in Embedded Systems. The
object-oriented approach significantly increases the productivity of developers.
The open standard RTSJ [2] (Real-Time Specification for Java) extends the
Java paradigm ”write once, run everywhere” to real-time Java applications.

At the same time, multicore technology is finding it’s way into Embedded
Systems as well: The number of CPUs and CPU cores per Embedded board is
steadily increasing. In Desktops and Servers, SMP and multicore CPUs have
been state-of-the-art for many years, because increasing the clock cycle is getting
more difficult and consumes too much power and space. As usual, Embedded
Systems follow the trends that were set by Desktops and Servers with a delay
of 5-10 years.

However, the software still has to catch up with the new situation. Most Em-
bedded Operating Systems and Software Development Tools are not ready for
multicore yet. E.g., the Real-Time Specification for Java, RTSJ, does not cur-
rently allow to achieve maximum advantage of such new devices. The Jeopard
project makes real-time Java suitable for multicore applications: The Garbage
Collector needs to be extended, the existing Standard classes and RTSJ API
needs to be checked for possible problems in multicore environments. Devel-
opment of complex, safe, real-time multicore applications needs to be made
easier. Even ordinary Java applications using several threads should benefit
when running on a multicore device.

2 Java goes Multicore

Just extending the tools is not enough: Also, a new kind of programming
paradigm is necessary for the development of Embedded Systems. Generally,
simply running an application on a multicore hardware is not sufficient. Ap-
plications with just one main thread need to be split up in order to benefit
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from multiple cores. If this is not possible (or would be too much effort), at
least VM-internal activities such as Garbage Collection and Finalizers will be
executed in parallel and thus increase the performance of the application. But
without parallelising the application itself, hardly any advantage can be taken
of more than one additional CPU core. Luckily, many Java applications make
use of multi-threading already: E.g., graphical applications usually are split up
at least into a painting thread, which (re-)paints a certain area of the screen
whenever it becomes necessary, a communication thread for gathering I/O, and
some kind of event handling. Other activities which can easily be put on ad-
ditional CPU cores are precomputation of data to fill a cache (e.g., parts of a
graphical application which are currently not visible) or a JIT compiler. Making
a real-time application to benefit from a multicore environment is usually more
difficult. For such applications, worst-case execution time (WCET) is more im-
portant than mere performance. Quite often, real-time applications have very
little activity in some high-priority threads and the main activity in a single
main thread. Since cache or JIT don’t improve the WCET, such applications
have to be modified in order to take advantage of multicore technology.

3 Extended API

The Jeopard team is working on an extended API to support developers who
want to write applications for a multicore device. A common design pattern
for multi-core devices is a parallel apply: A method should be invoked on a set
of values, regardless of the invocation order. An automated load balancing can
most efficiently use all available cores for this task, and still ensure scalability.

In many cases, the load balancing can be done automatically, but in some
cases, developers may have to control it explicitly. E.g., developers might want
to set the affinity of a thread or an event handler to a certain CPU or set of
CPUs, thus specify that not all threads may be executed on all CPUs. This
can be used to ensure, e.g., that a thread still finds it’s data in the CPU cache
next time it is executed. In some cases, multicore systems may even block high-
priority threads by synchronising on the same lock (see figure 1). If two threads
synchronise on the same monitor several times, the higher priority thread rt1
may block each time, if the monitor is held by the lower priority thread rt2. On
a single-core system, rt1 would block at most once in this case. This problem
can be avoided by setting the affinity: If all threads that synchronise on the
same locks are forced to run on the same CPU, this problem cannot occur.
But manually setting the affinity reduces the efficiency of the automated load
balancing. If possible, the load balancer should consider this automatically.

4 Multicore Pitfalls

Some programming techniques which are considered bad style in a single core
device can cause severe problems in a multicore environment. While in a single
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Figure 1: Running an application in a multi-core system may block high-priority
threads more often than a single core system.

core system, wrong synchronisation usually causes race conditions - which are
hard to find, but possibly never occur - a missing synchronisation most definitely
causes a multi core system to either crash or at least to return the wrong results.
Therefore, the Jeopard project is also working on style guides for multicore
developers. E.g., in a single-core environment, the thread with highest priority
can always rely on the fact that it will not be interrupted by any other thread.
This does not only affect timing (as in the previous example in figure 1), but
could also lead to broken data structures. Even though this “synchronising by
priority” is considered bad style even in a single-core environment—extending
the application with a higher-priority thread or code-reuse for other applications
become dangerous with this technique—it could be used there, but such an
application will fail in a multi-core environment.

An example for this behaviour can be found in the RTSJ library: To solve the
problem of Priority Inversion, RTSJ offers two protocols, Priority Inheritance
(PI) and Priority Ceiling Emulation (PCE). PI raises the priority of a thread
which is holding a lock to the priority of the thread which is acquiring the lock
(see figure 2), while PCE raises the priority of a thread which enters a lock to the
highest priority of which might ever acquire this particular lock (see figure 3).
The most important advantage of PCE compared to the default PI is, that PCE
not only avoids Priority Inversion, but is also guaranteed to avoid deadlocks in a
single-core environment. This is based on the assumption that entering a PCE
lock can never block at all—which is not true in a multi-core environment, as
shown in figure 3. While PCE could still be used in order to prevent Priority
Inversion in a multi-core environment, it loses it’s biggest benefit over PI.

For the development of future embedded applications, it is recommended
not to count on a particular number of cores or CPUs in the target system.
The current project might use a dual-core CPU, while the next project might
run on a hardware with more or even with less cores. Future development tools
should abstract as much as possible the number of cores, just like Embedded
Java abstracts the CPU architecture and Operating System.
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Figure 2: A Standard Problem and a protocol to avoid it: Priority Inversion
and Priority Inheritance.
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Figure 3: Priority Ceiling Emulation loses it’s advantages on multi-core.

5 Conclusion

Multicore systems are becoming mainstream in embedded devices, but current
software development tools, as well as Embedded developers still need to catch
up with the new situation. Multicore has been established in desktop systems
and servers, where performance is important, but realtime is not an issue. Those
big systems usually run several applications at the same time, such that they
can easier benefit from more than one CPU than an embedded system can,
which often just runs one single application. The JEOPARD project is an im-
portant mile stone for this new technology. It provides additional libraries and
guidance to embedded developers who have to go multicore. This can help
saving hardware costs and allows for more complex applications in embedded
systems. The partners are aicas GmbH (Germany), EADS Deutschland GmbH
(Germany), FZI Karlsruhe (Germany), RadioLabs (Italy), SkySoft (Portugal),
Sysgo (France), Technical University Cluj-Napoca (Romania), Technical Uni-
versity of Vienna (Austria), and the University of York (UK).
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