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ANA BELÉN MARTÍN RECUERO1, PETER BEYERLEIN2, HAUKE SCHRAMM3

Abstract. To achieve a high level of automation in medical image process-
ing, techniques for automatic detection of anatomical objects are required.

Recently, it has been shown that the Generalized Hough Transform (GHT)[1],

a technique widely used for 2D object detection, can also be successfully ap-
plied to 3D images. The central knowledge source of the GHT is a usually

manually generated shape model, describing the shape of the considered ob-

ject as a set of points. In this work we outline an automatic procedure for
generating efficient and discriminative shape models for usage in GHT-based

object detection. The technique (1) splits the N shape model points into N

individual knowledge sources, (2) recombines them into a Maximum Entropy
Distribution and (3) optimizes their individual weights in this distribution

using Minimum Classification Error Training (MCE). By this, an individual

weighting of model points with respect to their importance for the object de-
tection task is achieved. Since the technique estimates positive and negative

weights, the resulting shape model captures both the shape of the considered
object (points with positive weights) as well as the shape of confusable struc-

tures or anti-shapes (points with negative weights). Since unimportant points

can be identified by their low absolute weight and removed from the shape
model, it is possible to learn shapes from scratch, e.g. an initial random point

cloud. First results with this technique will be presented, showing that an ef-

ficient 100 point shape model for femur detection can be learned from scratch
by using only three training images.

1. Introduction

An automatic procedure for detecting and segmenting anatomical objects in 3-D
images is necessary for achieving a high level of automation in many medical appli-
cations. Recently it has been shown [2] that the GHT can be used for a coarse 3-D
delineation of anatomical objects with well defined shape in medical images. The
computational and memory requirements of the GHT are in general very large,
especially in case of considering 3-D images and various free transformation pa-
rameters. Although it is possible to substantially limit its algorithmic complexity
by restricting the number of transformation parameters and their quantization,
further speed-up is required to allow for application in interactive user environ-
ment. The number of considered image points (voxels) and the number of model
points directly influence the processing time and memory requirements. Besides,
shape models might partially match other concurrent shapes in the image appear-
ing the possibility of a wrong object detection in favor of the concurrent shapes.
To this end, techniques are required which allow for a ”smart” selection of the
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2 ANA BELÉN MARTÍN RECUERO1, PETER BEYERLEIN2, HAUKE SCHRAMM3

points representing the target object to improve the trade-off between computa-
tional complexity of the GHT and the object detection accuracy. Another aspect
of the GHT is the cumbersome user interaction to manually delineate the target
object to create a specific model of each object to detect. This paper outlines an
automatic procedure to create 3-D models from scratch, reducing the user interac-
tion to a minimum and which reduces the computational complexity of the GHT
and provides discrimination capabilities to the model, thus improving the detection
accuracy.

2. The Generalized Hough Transform

The GHT employs the shape of an object to transform a feature (i.e. edges of an
image) into a multi-dimensional function of a set of unknown object transformation
parameters. The maximum of this function over the parameter space determines the
optimal transformation for matching the model to the image, that is, for detecting
the object. In our framework, the GHT relies on two main knowledge sources:

• Shape knowledge, usually stored as so-called ”R-table”
• Statistical knowledge about the grey value and gradient distribution at the

edges remaining in an image after applying a preprocessing.

The GHT aims at finding optimal transformation parameters for matching a
given shapel model, located for example in the origin of the target image, to
its counterpart. To this end, a geometric transformation of the target object
M = {pm

1 ,p
m
2 , ...,p

m
Nm
} is introduced, defined by A · pm

i + t, with A being a
linear transformation matrix and t being a translation vector. Each edge point
pe

i , denoted as E = {pe
1,p

e
2, ...,p

e
Ne
} corresponds to a given model point pm

j . The
correspondence between an edge and a model point can for example be determined
by a comparison of the edge point gradient direction with the target object’s sur-
face direction at the position of the model point. Without any knowledge about
corresponding points, it must be assumed that any edge point corresponds to a
given model point. The correspondence is assumed to result from a transformation
of the model point according to

(2.1) pe
i = A · pm

j + t

If, the other way around, we aim at determining the translation parameters t which
may have led to a specific edge point pe

i , given a corresponding model point pm
j

and a transformation matrix A, we arrive at

(2.2) t(pm
j ,p

e
i ,A) = pe

i −A · pm
j

This equation can be utilized to perform a brute-force voting procedure in order to
identify the set of transformation parameters, t and A, which optimally matches
the given model to the image. Therefore, the detection procedure works as fol-
lows: For each possible corresponding pair (pm

j ,p
e
i ) and each possible setting of

the quantized parameters in A a voting for the corresponding translation and linear
transformation parameters in the discretized parameter space is done. In case of a
good match between the transformed model and the edge image, a large number
of pairs (pm

j ,p
e
i ) will vote for the same cell in the multi-dimensional accumulator

array. Thus, after processing all model and edge points, the optimal transformation
parameters t and A are given by the cell with the highest count.
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3. Minimum Classification Error Training for Model Optimization

A crucial aspect of the generalized Hough transform, which has rarely been ad-
dressed so far, is how to optimally combine the information from different model
regions or even points into a single decision function. Thus, it is proposed to log-
linearly combine a set of base models, representing (groups of) model points, into a
probability distribution of the maximum-entropy family. A minimum classification
error training can be applied to optimize the base model weights with respect to a
predefined error function. The classification of unknown data might be performed
by using an extended Hough model that contains additional information about
model point grouping and base model weights. Apart from an increased classifi-
cation performance, the computational complexity of the Hough transform can be
reduced with this shape model.

3.1. Log-linear model combination. We consider the classification of image fea-
ture observations1 xn into a class kε{1, ...,K} using the generalized Hough trans-
form. The class k may represent an object location, or arbitrary transformation
parameters. To solve this classification task, a set of M posterior probability base
models pj(k|xn), j = 1, ...,M is applied. These base model distributions represent
single Hough model points or groups of points and may be derived from the Hough
space voting result on some training volume data by the relative voting frequencies:

pj(k|xn) =
N(j, k, xn)∑
∀k′ N(j, k′, xn)

(3.1)

Here, N(j, k, xn) represents the number of votes by model point (or region) j for
hypothesis k if the features xn have been observed. Alternatively, the probability
distribution could be estimated by a multi-modal Gaussian mixture.

In the next step, the base models are log-linearly combined into a probability
distribution of the maximum-entropy family [3]. This class of distributions ensures
maximal objectivity and has been successfully applied in various areas.

pΛ(k|xn) = e− logZ(Λ,xn)+
∑M

j=1 λj log pj(k|xn)(3.2)

The value Z(Λ, xn) is a normalization constant with

Z(Λ, xn) =
∑
k′

exp

 M∑
j=1

λj log pj(k′|xn)

(3.3)

The coefficients Λ = (λ1, ..., λM )T can be interpreted as weights of the models j
within the model combination.

As opposed to the well-known maximum entropy approach, which leads to a
distribution of the same functional form, our approach optimizes the coefficients Λ
with respect to a classification error rate of the following discriminant function:

log
pΛ(k|xn)
pΛ(kn|xn)

=
M∑
j=1

λj log
pj(k|xn)
pj(kn|xn)

(3.4)

In this equation, kn denotes the correct hypothesis. Since the weight λj of the base
model j within the combination depends on its ability to provide information for

1Note that xn may represent the features of a complete image or even a set of images.
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correct classification, this technique allows for the optimal integration of any set of
base models.

3.2. Minimum classification error training. Assume, we are given a set of
training volumes n = 1, . . . ,H with correct class assignment kn and generate a
feature sequence xn for each volume. By performing a preliminary classification
with equal weights (i.e. λj = const ∀j), a set of rival classes k 6= kn can be
determined. In order to quantify the classification error for each rival class k, an
appropriate distance measure Γ(kn, k) must be selected. Of course, this choice
strongly depends on the class definition. In case of a translation classification
problem for example, where the solution is a simple 2D or 3D position vector, the
Euclidean distance between the correct point and its rival could be used. An even
simpler idea is to use a binary distance measure, which is ’1’ for the correct class
and ’0’ for all others.

The model combination parameters should then minimize the classification error
count E(Λ)

(3.1) E(Λ) =
H∑
n=1

Γ
(
kn, arg max

k

(
log

pΛ(k|xn)
pΛ(kn|xn)

))
on representative training data to assure optimality on an independent test set. As
this optimization criterion is not differentiable, we approximate it by a smoothed
classification error count:

ES(Λ) =
H∑
n=1

∑
k 6=kn

Γ(k, kn)S(k, n,Λ),(3.2)

where S(k, n,Λ) is a smoothed indicator function. If the classifier (3.4) selects
hypothesis k, S(k, n,Λ) should be close to one, and if the classifier rejects hypothesis
k, it should be close to zero. A possible indicator function with these properties is

S(k, n,Λ) =
pΛ(k|xn)η∑
k′ pΛ(k′|xn)η

,(3.3)

where η is a suitable constant. An iterative gradient descent scheme is obtained
from the optimization of ES(Λ) with respect to Λ [3]:

λ
(0)
j = 1 (Uniform Distribution)

λ
(I+1)
j = λ

(I)
j − ε · η

H∑
n=1

∑
k 6=kn

S(k, n,Λ(I)) ·

·Γ̃(k, n,Λ(I)) · log
pj(k|xn)
pj(kn|xn)

Λ(I) = (λ(I)
1 , . . . , λ

(I)
M )T(3.4)

j = 1, . . . ,M

Γ̃(k, n,Λ) = Γ(k, kn)−
∑
k′ 6=kn

S(k′, n,Λ)Γ(k′, kn).
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This iteration scheme reduces the weight of model points or groups which favor
weak2 hypotheses while increasing the weight of base models which favor good
hypotheses.

3.3. Classification with extended Hough model. The classification of an un-
known volume data set is performed with an extended Hough model, that incor-
porates information about the capability of each model point to detect the object
in the correct position. This is represented as model point weights,(as obtained
from minimum classification error training). The classification algorithm proceeds
as follows:

1. Apply GHT using input features x to fill the Hough space accumulator.
2. Determine pj(k|x) for all base models j and classes k using the accumulator

information (e.g. with equation (3.1)).
3. Compute the discriminant function (3.4) for each class k with the λj ob-

tained from minimum classification error training.
4. Decide for the class with highest discriminant function.

3.4. Model Point Selection. Through a model point selection, we aim at reduc-
ing the computation complexity of the GHT, and at the same time improving or
at least maintaining the classification performance. We decide to eliminate model
points that are not decisive for the classification, that is model points that are
not discriminant. Now, the issue is how to define the discrimination potential of a
model point. The model points with higher discrimination potential are those that
only vote for the cell kn or in turn for a cell k with a low loss Γ(k, kn) (1). Through
our investigations, we realized that model points with high number of votes in cells
k but low number of votes in the cell kn also obtain large absolute λ values (2).

This fact can directly been observed in the iteration scheme for the calculation of
the Λ (equation 3.4). Assume that a solution cell k is considered a good3 hypothesis
of the GHT and therefore is selected by the smoothing function (equation 3.3)
during the training. In this case, the model point dependent contributions will be
re-estimated according to the difference in number of votes between the selected
cell k and kn, as well as the distance measure Γ(k, kn,Λ).

For the first kind of model points (1), the gradient descendent iteration scheme
(equation 3.4) increments the value of their λ. For the second kind of model points
(2), a decrement of the λ value of the model point takes place.

On the other hand, the model points with lower discrimination capability are
those with more uniform contributions to the Hough Space. The smaller the dif-
ference in votes between the cell k and the cell kn, the more softly the λ value will
vary.

Taking into account these reasonings, we define a discriminative model point for
the GHT as

(1) a model point matching the object or its surroundings, but not matching
other remaining shapes/edges in the image. The λ of these model points
are positive.

2Weak means that the distance to the correct hypothesis is large.
3The smoothing function selects a cell k according to their number of votes with respect to the

whole Hough Space. The number of considered cells k can be controlled through the parameter η

(equation 3.3).
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(2) a model point exclusively matching concurrent shapes. The λ of these
points are negative.

Both of these model points obtain large absolute λ values.
It is remarkable, that a very negative weight applied to our model point de-

pendent contributions to the Hough Space would also mean an improvement in the
discrimination of our object detection task. Explained in a different way, this model
point is providing information for the classification in two different ways:

(1) related to the concurrent objects in the image. We have to consider that
these model points cause high number of votes in concurrent solution cells.
The probability of deciding for this cell as the best solution of the object
detection task decreases along with the negative contribution of this model
point to the solution k. In this way, the probability of a misclassification
decreases.

(2) related to the target shape. That is, the cell kn or in turn cells with low
cost Γ(k, kn,Λ). The probability of the classification of this cell as the best
solution of the object detection will increase when the number of votes
coming from this model point in the present cell is low. Note the effects of
normalization, a negative value of the normalized feature multiplied by the
negative value of the model point weight is equal to a positive increment
to be added to the cell. Consequently, the probability to classify this cell
as the best hypothesis of the object detection task will increase.

This observation leads to a shape model where the model points included in it,
do not only belong to the object to detect, but also to other shapes remaining in
the preprocessed image.

4. Automated Generation of Shape-Variant Hough Models

Presently, the generation of shape models for the generalized Hough transform
requires substantial user interaction and has to be repeated each time a new shape
is introduced. The ideas described in this section aim at improving this situation by
introducing an automatic determination process for shape-variant Hough models
that requires only minimal user interaction. Technically, it is based on an random
model initialization in combination with an appropriate (discriminative) weighting
of Hough model points. With this method, the generation of a new shape-variant
Hough model is simply done by labeling the location of this shape in a small set of
training volumes. The generated model will be well adapted to all training shapes
and therefore incorporates the shape variability of the whole training data set.
The algorithm for automatic generation of shape-variant models proceeds as follows:

1. Apply feature detection (e.g. Sobel edge detection) on all training volumes
2. For each training volume: ask user for object location
3. Generate a spherical random scatter plot of model points using two input

parameters: (1) number of points, (2) concentration decline in dependence
of the distance to the center. Or use as input for the cloud of model points
the remaining edge points after applying the pre-processing of the image.

5. Run the iterative discriminative model point weighting procedure, described
in Section 3

6. Run an iterative selection of model points based on their absolute weight
value as explained in 3.4 followed by a re-estimation of the discriminative
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model point weighting procedure (previous point), until a given stop crite-
rion is reached (i.e. failure in the posterior segmentation task).

The generated shape-variant model and its model weights can directly be used in
a GHT-based classification.

5. Experiments

We set up an experiment with an initial cloud of 10000 model points. The loca-
tion of the right femur (object to detect) is given in three Computed Tomography
(CT) training images. The training and test images include the pelvic zone and the
left femur. The images are 512x512 voxels with a variable number of slices (between
54 and 92). The voxel extension is 0.94, 0.94 and 3 mm in x, y and z direction
respectively. We run the iterative discriminative model point weighting procedure
and iteratively remove model points based on their smallest absolute value. We
evaluated the system on seven independent test images and on the training data.
The selection of model points has been performed according to the largest absolute
value. We measured the Euclidean distance to the ground truth in Hough Space
units for the test data. The table 5 presents the results for different number of
model points selected from an initial number of 10000 random model points. The
means and standard deviations are presented in the table. We observe a better
performance while reducing model points until reaching 100 model points. The
larger the distance error measure the worse performance of the classifier and the
more difficult to perform a posterior segmentation.

Model points 1000 500 250 100 50
Euclidean distance 1.38±0.30 1.38±0.30 1.28±0.26 0.88±0.6 2.66±3.46

Table 1. Mean and standard deviation of validation metrics for
seven patients.

A successful segmentation was possible given the outcome of the Discriminative
Generalized Hough Transform (DGHT) using optimized shape models with 100
model points in nine of the ten images tested. In the failed case, only a little
misplacement was observed.

We applied the GHT and DGHT with 1000 model points from the random cloud
(see figure 1). The GHT hypothesized solution is far away from the ground truth
The Hough Space is more uniform for the case of the DGHT and the solution is
located in the right position.

6. Conclusions

We introduce a new concept of weighted positive and negative model point con-
tributions for the GHT. This approach supposes the introduction of a new dis-
criminative object detection technique. The learned model contains model points
referring to the target object: ”shape” with positive contributions to the Hough
Space and model points referring to other concurrent objects: ”anti-shape” with
negative contributions reducing the probability of detecting the object in a con-
current wrong location. The absolute value of the weight refers to the capability
of a model point in the shape model to discriminate between different solutions.
Based on this assumption, it is possible to iteratively exclude model points with
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Figure 1. Hough Space after applying the GHT with standard
shape model and DGHT with 1000 random model points. The
location solution corresponds to the brighter cell.

the smallest absolute weight until a stop criterion is reached. The learn-shape is
based on the matches of the shape model to the remaining structures in the image.
Therefore, a fixed preprocessing must always be applied. The generation of shape
models from scratch incorporates in the model other remaining image structures
to support the object detection. This way, more information is used to detect the
target. The results presented seem promising. However, more training data and
crosslink validation are necessary to support the first evaluation experiments. We
demonstrate a considerable improvement compared with a random shape model
with uniform model point contributions. Thus, this procedure makes feasible the
generation of shape models from scratch and additionally allows for detecting ob-
jects discriminatively. A focused Hough Space is achieved compared to the GHT
using a standard shape model. The DGHT increases detection accuracy for similar
GHT computational complexity.
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