
Client-Based Adaptive Load Balancing in
Service-Oriented Systems

Jan Küting1 Helmut Dispert1 Joseph Morgan2

Jay Porter2 George Wright2

1Kiel University of Applied Sciences, Germany
Faculty of Computer Science and Electrical Engineering

jan.kueting@student.fh-kiel.de, helmut.dispert@fh-kiel.de

2Texas A&M University, Texas U.S.A
Department of Engineering Technology and Industrial Distribution

{morganj, porter, wright}@entc.tamu.edu

ABSTRACT
We consider the problem of sender-initiated adaptive load
balancing in service-oriented distributed systems. We in-
vestigate an approach that is based on local observation of
response-times. Since in this system the balancing decision
is not based on remote state observation and information
exchange, the approach allows to decouple the load bal-
ancing mechanism from any concrete technology platform.
First tests and comparisons with shortest queue schedul-
ing are promising. The results indicate that response-time-
based load balancing performs surprisingly well under cir-
cumstances where the variation of the observed response-
time is not caused by variation in message size or request
type.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]: Network
Architecture and Design, Distributed Systems

General Terms
Design, Experimentation, Measurement, Performance

Keywords
Client-Based, Adaptive, Load, Balancing, Sharing, Response-
Time

1. INTRODUCTION
“One of the most important potential benefits of loosely-
coupled distributed systems is in the area of resource shar-
ing.” [3]. The sender distributes requests to different net-
work nodes or a receiving node gives requests away to other
nodes. In either way, the goal is to spread requests over
multiple nodes in the system. An important distributed
system is a system that has been designed with service-
oriented principals in mind. Middleware-based approaches
such as Enterprise Service Bus (ESB) and Business Process
Management Suite (BPMS) are playing a growing role in
the industry [5].

Under the assumption that the role of load balancing will
play a growing role in providing massively scalability of ser-

vices, this paper uses the concept of a virtual service which
is based on today’s common standards. A virtual service
consists of multiple service instances. Load is then balanced
between those instances. Any consumer can access a virtual
service transparently without having the knowledge about
load balancing is taking place under the cover. The concept
of service virtualization has a much broader sense, which
includes unified deployment and management capabilities.
Those topics are not covered by this work.

Since our goal is to provide a fully transparent approach
which does not require any changes to a service’s implemen-
tation, grounding balancing decisions on information that
can only be provided by such an implementation is question-
able. If the approach would be based on the queue length for
example, any service instance would have to provide moni-
toring and information exchange capabilities. Or as Othman
et al. put it: “To achieve this level of communication, appli-
cation servers must be programmed to accept load balancing
requests (as well as client requests) from the adaptive load
balancing service. However, most distributed applications
are not designed with this ability, nor should they necessarily
be designed with that ability in mind since it complicates the
responsibilities of application developers” [10].

We propose to base the load-balancing decision on local
observation exclusively. Any service consumer can observe
the response-time by its own. Therefore the approach de-
couples sender and receiver because no balancing-related in-
formation has to be exchanged between the communication
partners.

The main question we will address in this paper is whether
or not an adaptive load balancing approach whose balanc-
ing decision is based upon locally observed response-time is
capable of delivering similar results as a balancing scheme
that is based upon a load-index such as the queue-length
as observed by a remote node. Further we investigate the
circumstances in which the Response-Time-Based approach
might perform well or not well.

The investigation is based on simulation and covers differ-

1



ent scenarios like variation in request type and other se-
tups where clients and service instances are located in dif-
ferent networks. In addition, we present a framework to
perform load balancing transparently, which is based on
Web Services. But we could have chosen any other tech-
nology instead, for example Representational State Transfer
(REST) [4]. In addition, the approach is grounded on the
Domain Name System (DNS) to realize service virtualization
and late binding which is associated with it.

2. RELATED WORK
Load balancing is a wide research topic and has been stud-
ied intensively over the last decades. Middleware based
approaches have been studied for example by Othman et
al. [10] and Putrycz [11].

Load balancing for large-scale networks has mainly been
applied on web access or on lower protocol levels by using
specific hardware to spread internet traffic to multiple hosts.

Decision making which is based on estimating the response-
time has been studied, for example by Ferrari and Zhou [3],
and Banawan et al. [2], but to the author’s knowledge, an
experimental study of load balancing which is purely based
on local observation of the response-time has never been
given.

3. BALANCING APPROACH
We propose a client-based (sender-initiated) load balancing
approach that is based on the locally observed response-
time.

3.1 Late Binding and Address Translation
Since a client must not know the physical endpoint address
of any service instance, we need a procedure to address the
virtual service as a whole - without naming any particular
instance. We further need to translate this address to a
physical endpoint dynamically. We call this address a virtual
address and further assume that we can translate any virtual
address av into a set of physical addresses A at runtime
by applying a one-to-n table. Such table might be defined
as Aav = {a1, a2, . . . , an}, where ai is a physical endpoint
address of one particular service instance.

It is clear that a client must not have knowledge about
address translation. Considering n clients in a system, such
information would have to be managed by n components
separately and independently.

In addition to address information, there is a clear need
to manage meta-information about a service (such as the
description of its contract for example). Since all service
instances are basically the same (only the physical address
differs), the centralized address translation component could
also manage meta-information for the virtual service as a
whole.

The Domain Name System offers distributed address trans-
lation and decouples consumer and provider. The system is
in place for decades and has been proven to scale for very
large environments. Therefore we propose to use DNS to
resolve a virtual address into physical ones by using the
TXT-record type [9].

Figure 1: Core entities and their relationships (UML Class
Diagram)

Instead of placing ordinary text, we can simply place a full
qualified URI. By introducing different URI types, meta-
information can also be embedded by publishing an addi-
tional URI, which points to the location where such meta-
information can be accessed. This might be an LDAP server
or just a web server. The following example (listing 1)
maps the virtual address business-service.fh-kiel.de to three
different instances (ISC Bind zone file [7]).

We introduce the keyword wsdl:: to define an URI that
points to the WSDL information for the virtual service.
WSDL is used to describe a web service contract [12]. Fur-
ther, such description is applicable for all service instances,
since they only differ in their endpoint address. The port::
keyword defines an URI that points to one service instance of
the virtual service. Any additional meta-information might
be added by introducing additional keywords.

3.2 The Ratio Approach
The approach is based on selecting service instance at ran-
dom. From a client’s point of view, a service instance is
called a channel. We assume that the resulting probability
for selecting channels should reflect the ratio between the
observed response-time. For example if we only have two
channels and the response-time that corresponds to these
channels have both the same value (for example 10 millisec-
onds), we expect to end up with the probability of 50 percent
choosing channel A and 50 percent choosing channel B. The
response-time for both channels could be two seconds in av-
erage. This is a quite long time compared to 10 milliseconds
of the previous example. In fact the client simply does not
know what is long and what is not. The request might be
a complex one that just takes some time. We assume that
the resulting ratio has to take the differences between the
observed response-time values into account. Not the actual
values are of interest; the relative differences are.

Therefore the approach is based on calculating the ratio
between the best channel’s response-time tb and any given
channel’s response-time ti. The normalized weight per chan-
nel (performance-index) can be defined as fi = tb

ti
. We as-

sume that tb ≤ ti since tb has been selected as the best (low-
est) response-time. Figure 2 shows the resulting performance-
index for any channel by assuming that the best channel’s
response-time is 10 milliseconds. The performance-index for
the best channel is assumed to be unity - which is the best
possible performance-index. As the figure demonstrates, the

2



Listing 1: Forward mapping of a virtual service address to three service instances using the TXT-record (ISC Bind)

business -service IN TXT "wsdl::http ://www.fh-kiel.de/business.wsdl"
IN TXT "port::http :// web01.fh-kiel.de/service.aspx"
IN TXT "port::http :// web02.fh-kiel.de/service.aspx"
IN TXT "port::http :// web03.fh-kiel.de/service.aspx"

resulting performance-index goes down exponentially as the
difference between the response-time of the worse channel
becomes greater than 10 milliseconds.

Figure 2: Performance-Index

The probability for selecting channel i is then defined as pi =
fi∑

fi
. We propose to select channels randomly by applying

the principal of two choices [1, 8]. Therefore two channels
are selected randomly according to the probabilities (non-
uniformly with replacement). Then the channel with the
lower response-time is taken. It is important that random
channel selection is based on replacement. Therefore there
is a certain chance of selecting a worse channel twice, which
guaranties that a bad channel is still selected from time to
time. If a bad channel would never be chosen again, the
system would not detect that such channel became better in
the meantime.

3.3 Balancing Strategies
The Response-Time-Based strategy uses the Ratio approach
for calculating the performance-index. Channel selection is
based on the Two Choices principal.

The Queue-Length-Based approach relies on information ex-
change between a service instance and a client. The count
of request in a service instance’s queue is transferred to
the client by embedding such information inside a response
message. As we have realized, the approach cannot be based
on always taking the best channel (e.g. lowest queue length).
Therefore the approach uses a modified version of the ratio
approach. The performance-index is defined as fi = lb+1

li+1
,

where lb is the lowest queue length and li the queue length
for the channel i. Channel selection is performed by applying
the Two Choices principal.

The Shortest Queue approach assigns new jobs to that ser-
vice instance that has currently the least count of jobs in its
processing queue. Winston [14] has shown that this policy is
optimal for homogeneous systems under certain assumptions

such as request distribution. The approach has been used
in a way where we assume that a client always knows the
current queue length of all service instances. No information
is exchanged between communication partners. For sure,
this is only possible using simulation and is supposed to
demonstrate the performance of other approaches compared
to the theoretical maximum.

Finally we use the cyclic splitting approach [13], where the
ith request is forwarded to the (i mod k)th service instance
(having k service instances). This static approach is also
well known as Round-Robin.

3.4 Failover
A service instance might fail at any time. We assume that
the underlying middleware is able to detect failures. In
such cases, the load balancer might decide to instantly take
another channel which has not become unavailable yet.

However, the system has to detect if a channel - which has
failed in the past - became available again. The system could
continue to try a channel which has failed. The probability
for choosing that channel could be influenced by the number
of tries made so far. Therefore the system would choose the
channel less often as the number of failures increases. But
there is a certain tradeoff to make: The delay for trying
a channel might be expensive. The amount of time needed
depends on the time-out behavior of the underlying protocol.

To overcome this dependency a system might not use a
regular business request for detecting channel recovery. This
has the advantage that such detection mechanism could be
performed in parallel to regular request processing. There-
fore the technique would not have a direct impact on the
throughput. Sending an ICMP ping request for example
would not solve the issue because receiving the ping echo
does not necessarily mean that the service is alive. Any other
form of communication between a client and a service in-
stance violates the transparency requirement (see section 1).

We propose a solution that misuses a regular business re-
quest for detecting channel recovery. The technique is based
on a special request type that is supposed to have no business
related functionality. Such operation, for example IsAlive(),
simply sends a response message back to signal service activ-
ity. The system could use this request type to detect channel
recovery in parallel to regular request processing while the
throughput is not affected. The solution has the disadvan-
tage that each service must provide such an operation.

4. SIMULATION
Experimental results have been obtained from simulation.
The process is based on sequential discrete-event simula-
tion [6]. Networks can be arranged hierarchically. The
smallest amount of time is one microsecond. To simulate
the CPU, processing-jobs are queued and served in FIFO

3



order. Message encoding and decoding is not simulated.
Data transmission on any communication link is possible at
any time for any simulation object even simultaneous. The
system behaves as if each client would have its own private
full-duplex communication link to all service instances.

5. RESULTS
This chapter presents the results obtained from performing
load balancing strategies under certain scenarios. We in-
vestigate how those strategies perform by operating eight
clients and four service instances.

5.1 Default Experiment Setup
An experiment takes 410 seconds, where each 10 seconds
the system state is changed to produce additional stress
on one particular service instance. Stress is produced by
adding a new client to the system, which sends requests to
one particular service instance exclusively without the use
of any load balancing mechanism. Such a client is called
a flooder since it floods the target instance with requests.
Those requests are not included in the calculation of the
throughput. A Request is sent as fast as possible as soon
as the response message of the previous request has been
received. A request message is 512 bytes in size. A response
message is 256 bytes long.

An experiment is split into two parts. During the first half,
each 10 seconds, the system introduces additional stress on
one particular service instance. After 21 iteration (after 210
seconds), every 10 seconds stress is reduced incrementally.
After 400 seconds, the system has reached a state where
there is no stress as it were at the beginning of the experi-
ment.

5.2 Comparison of different Strategies
The Queue-Length-Based approach (figure 3c) performs slightly
better in terms of the total throughput than the Response-
Time-Based approach does (figure 3a). Both approaches
adapt to the experiment scenario almost equally well by
favoring the blue1 channel less often.

Surprisingly, the Shortest Queue approach (figure 3d) per-
forms not that much better than expected. We have to
keep in mind that the approach uses a magic hand that
transmit the current queue length of all service instances
instantaneously to any client on a per-request basis. A client
always knows the queue length of all service instances. In
terms of total throughput, Shortest Queue performs slightly
better than the other adaptive approaches do. In addition,
Shortest Queue omits the blue channel completely (after
around 40 seconds). It is clear that this has a direct impact
on the overall throughput.

Under the given experiment scenario, load balancing which
is based only on local observation of the response-time is
able to deliver a quite good performance in terms of total
throughput as a comparable approach like Queue-Length-
Based does, which is based on information exchange.

1The blue channel is labeled as Channel 1.

5.3 Request Type Variation
The following experiment has been set up in the same way
as the previous. Each message is 512 bytes long. But the
experiment uses four different kinds of request types: The
first message type takes eight milliseconds to process on a
service instance. Each following request type takes a multi-
ple of eight milliseconds: 16 milliseconds for the second one,
32 milliseconds for the third one and finally 64 milliseconds
for the last request type. We expect a more significant noise-
level in the observed response-time than we observed during
the previous experiment.

Figure 4 shows the total throughput per service instance. A
comparison between the approaches makes clear that Response-
Time-Based (figure 4a) favors the blue channel too often.
Queue-Length-Based (figure 4b) in contrast, adapts well to
the changing condition: It favors the blue channel signifi-
cantly less often. Therefore more requests can be placed on
the remaining service instances as the observed throughput
indicates. Unsurprisingly, Shortest Queue (figure 4c) adapts
even better than Queue-Length-Based does.

An improvement of the Response-Time-Based approach might
ground its balancing decision on the average response-time.
Instead of considering the last known value, the technique
calculates the average value of the previously known values
for the response-time for each channel. Then, the performance-
index is calculated by following the Ratio approach as de-
scribes in section 3.2. But in this case, instead of taking the
actual response-time into consideration, the calculation is
based on the averaged value (the last 20 requests). Figure 4d
shows that the approach is able to adapt to the situation,
but does not perform well at all. It still favors the blue
channel too often as we compare it with Queue-Length-Based
or Shortest Queue.

We conclude that the Response-Time-Based approach per-
forms well if we assume that the processing-time for different
operations is more or less equal or the distribution of the
associated request types does not result into a high variation
in the observed response-time.

5.4 Different Networks
The following experiment uses - again - eight clients and
one virtual service that consist of four instances. While
previous experiments used one single network, the following
test uses two different networks with identical properties
(bandwidth is 10 megabit/sec, latency is one millisecond).
Clients and service instances are distributed equally (four
clients and two instances per network). To enable inter-
network communication, a third network is introduced that
interconnects both local networks. Such network is initially
able to transmit 10 megabit/sec. The initial latency is also
one millisecond.

During the experiment, each 10 seconds, the latency of the
interconnecting network is increased by two milliseconds.
Therefore we expect the observed response-time to change
over time. Requests that are served by service instances
of the local network are served faster than requests that
are serviced by instances that are located in the other net-
work. After 21 increments (after 210 seconds) the latency
is decreased by two milliseconds each 10 seconds. After

4



(a) (b)

(c) (d)

Figure 3: Comparison of the throughput between different balancing strategies: (a) Response-Time-Based; (b) Round-Robin;
(c) Queue-Length-Based; (d) Shortest Queue

400 seconds, the latency of the interconnecting network has
reached its initial value of one millisecond.

It is obvious that the Queue-Length-Based approach (fig-
ure 5a and 5b) does not adapt well to the changing condition.
The resulting throughput performance is quite similar to
those obtained from Round-Robin during the first experi-
ment (see section 5.2). Because the balancing mechanism is
unaware about the increasing latency of the interconnecting
network, it cannot adapt to it at all. Any balancing decision
that is not based on response-time or is unable to detect
the increasing latency of the interconnecting network, will
obviously fail to adapt.

In contrast, Response-Time-Based (second row) is based on
the response-time and is therefore able to detect the increas-
ing mismatch. It adapts well to the changing condition.
As the latency increases, clients favor there local service
instances. All clients can remain a total throughput of about
50 requests per second, independently of the increasing la-
tency of the interconnecting network. This is comparable to
the total throughput we observed from the Queue-Length-
Based approach at the beginning of the experiment, where
the latency had not been changed yet.

5.5 Additional Probes
The last experiment focuses on the question, if the perfor-
mance of the Response-Time-Based load balancing approach
can be increased by introducing additional probe messages.
The approach depends on response-time information that
is observed by measuring the time that elapsed on a per-
roundtrip basis. If the average load of all instances does
not change over time, we expect a client to observe more or
less the same response-time. If the load condition changes
with the frequency of fs, we expect a client to detect those
changes accurately, if the frequency of sending requests fr is
higher than the frequency of those changes (e.g. fr > fs ). If
not, there are simply not enough requests in order to observe
those changes accurately enough, since sending requests is
the only method for observing the response-time.

The following experiment consists of one network. The
bandwidth is 10 megabits per second. The latency is 0.4
milliseconds. Both properties do not change over time. The
network contains 32 clients and one virtual service that
consist of four instances. Each client sends a request every
1.6 seconds. A client will not send another request, if there
is still a request pending. In such a case, a client has to wait
for the next period. The processing-time is supposed to take
eight milliseconds per business request.

5



(a) (b)

(c) (d)

Figure 4: Comparison of the throughput per instance with request type variation: (a) Response-Time-Based; (b) Queue-
Length-Based; (c) Shortest queue; (d) Response-Time-Based (Averaged)

Either a client does not send additional probe messages at
all, or such probe-messages are sent in a certain interval.
A client does not have to wait to receive the corresponding
response message of a probe message in order to send an-
other one. A probe message is sent to all service instances
at once. This says that a client periodically sends out probe
messages to all service instances simultaneously. By having
four instances, each client sends out four probe messages.
The processing-time to process one probe message is sup-
posed to take one millisecond.

In addition, the system contains four clients, which send
requests to one particular service instance. Those clients do
not make use of any load balancing mechanism. They are
supposed to produce additional stress on their particular
target instance. The important aspect is that the target
of those clients changes every second. The target instance
is chosen by iterating over all instances available. During
the first second of the experiment, the first instance is cho-
sen. During the following second, those clients will target
instance number two and so forth. After the last instance
has been stressed, the first one is chosen again. We notice
that the global system state is changing dramatically every
second during the experiment.

Figure 6 shows the results for the response-time per message

which has been observed during all experiment variations
(averaged values over five runs). During the first variation
(No Probes), a roundtrip took - in average - less than 21
milliseconds. By sending additional probe messages, the
system is able to improve the average response-time per mes-
sage. The period for sending a probe message went from ini-
tial 800 milliseconds down to 200 milliseconds. We observe
a significant improvement during the first three variations
which do include probe messages. The average response-
time per message had been improved from initially around
21 milliseconds (no probes) down to around 17.4 millisec-
onds (four probe messages per client each 400 milliseconds).
As we go further by sending even more probe messages, the
improvement vanishes.

The results indicate that old information about the system
state is useful in the sense that a balancing decision can
be based on it. The quality of the resulting performance -
in terms of response-time per message - highly depends on
how old the information is. More accurate information is
more useful than older information. Increasing the period
of sending additional probe messages leads to more accurate
information about the system state and finally to an increase
in the overall performance.

Based on this observation, a system might implement response-

6



(a) (b)

(c) (d)

Figure 5: Comparison of the throughput with different networks (left: first network with four clients and two service instances;
right: second network with the same amount of clients and service instances): (a) Queue-Length-Based (first network); (b)
Queue-Length-Based (second network); (c) Response-Time-Based (first network); (d) Response-Time-Based (second network)

Figure 6: Comparison of the response-time per message with
and without additional probe messages (averaged over five
runs)

time-based load balancing by following the dispatcher model,
where an in-the-middle component routes all requests to
service instances. We assume that the overall request send
rate of such a dispatcher component is much higher than the
send rate of each client, since every request of every client

will be balanced by the dispatcher. On the other hand, such
implementation might lose any benefits from local client
observation in terms of changes in the network topology as
we have investigated in section 5.4.

6. CONCLUSIONS AND FUTURE WORK
The first section gave some indications for an increasing
demand of load balancing in service-oriented distributed sys-
tems. Vendors are shifting their traditional infrastructure
forward to service-oriented systems. Further indications are
given by emerging trends in shifting applications into the
cloud, where computational power can be brought to de-
vices, desktop applications and web-sites. Finally ubiquitous
computing promises an increasing number of small embed-
ded devices which might rely on the computing-power of the
cloud.

On the other hand, a number of technologies exist that
enables service-oriented distributed systems. Web Services
is clearly a common technology in that field, but others
like REST gain more and more importance. Load balanc-
ing is often coupled to a specific technology or application
scenario. Receiver-initiated solutions require a specific im-
plementation on the service side. Sender-initiated solutions
require remote state monitoring and information exchange

7



capabilities, which also require specific implementation on
the service side.

For that reason we have introduced an adaptive client-based
load-balancing approach which is only based on local obser-
vation. By observing the response-time the approach allows
to balance load independently of any concrete technology or
implementation. Further we introduced a mechanism which
is based on DNS to perform address translation dynami-
cally. Finally we have investigated the approach through
simulation which delivered promising results under some
circumstances.

For systems without any variation in request type, the ap-
proach is able to perform surprisingly well. There might be a
certain tradeoff in using the response-time-based approach,
but it offers independence and loose-coupling to the imple-
mentation and technology used for service implementation.

Investigation based on variation in request type showed that
the approach is not able to adapt. The variation in the
observed response-time is simply too noisy in order to clearly
identify good performing channels from bad ones. Averaging
the observed response-time brought a slightly improvement
but the results were not promising at all. However, the
experiment used an extreme setup to provoke such effect.
The approach might be applicable for systems where service
operations do not differ significantly in their response-time
behavior.

We propose to concentrate further work on improving the
Response-Time-Based approach to overcome limitations where
clients observe variation in the response-time. We propose to
measure the minimum response-time per request type rm =
{r1, r2, . . . , rn}. If we assume that the processing-time for
each request-type is nearly constant, then the ratio between
the best response-time of all request types rb and any given
response-time might be used as a filter to normalize the
variation in the observed response-time. Therefore the ratio
factor for request type i would be given as ri = rb

ri
. Then, the

Ratio approach could be used to calculate the performance-
index for channel i and request type j by applying fij =
tb∗rj

ti
, where tb is the best response-time for all channels, ti

the response-time for channel i and rj the ratio factor for
the request type j.

Not surprisingly, the approach performs best in situations
where the system must adapt to circumstances caused by
the network. The approach can remain a certain level of
total throughput, even when there is a huge delay for some
service instances which has been caused by the network.
Furthermore results indicate that any balancing approach
which does not include the response-time or is unable to
detect network properties is not able to adapt at all and
falls back to a behavior similar to Round-Robin (with heavy
load on some service instances).

Finally, experiments have shows that the system in order to
perform well requires at least a request rate which is higher
than the rate in which the system state as a whole changes.
By periodically sending hypothetical probe messages, the
system could increase its performance where such period was
below the period in which the global system state changed.

To overcome situations where the request rate of a client is
simply too low, we have proposed to introduce a dispatcher.
Such arrangement generally results into a higher request
rate, since the dispatcher represents all clients or groups of
clients in the system. Therefore the request rate at which the
dispatcher operates is clearly higher than the request rate
of any client. In addition, we proposed the dispatcher-based
deployment as a solution to overcome the lack of influence
on a client’s implementation, where the approach cannot be
embedded into clients directly.

7. REFERENCES
[1] Y. Azar, A. Z. Broder, A. R. Karlin, and E. Upfal.

Balanced allocations (extended abstract). In STOC
’94: Proceedings of the twenty-sixth annual ACM
symposium on Theory of computing, pages 593–602,
New York, NY, USA, 1994. ACM.

[2] S. A. Banawan and J. Zahorjan. Load sharing in
heterogeneous queueing systems. In INFOCOM, pages
731–739, 1989.

[3] D. Ferrari and S. Zhou. A load index for dynamic load
balancing. In ACM ’86: Proceedings of 1986 ACM Fall
joint computer conference, pages 684–690, Los
Alamitos, CA, USA, 1986. IEEE Computer Society
Press.

[4] R. T. Fielding. Architectural styles and the design of
network-based software architectures. PhD thesis,
2000. Chair-Richard N. Taylor.

[5] Gartner Inc. Gartner says worldwide application
infrastructure and middleware market revenue
increased 13 percent in 2007. Jun. 2008.
http://www.gartner.com/it/page.jsp?id=689410.

[6] S. Ghosh. Distributed systems: An algorithmic
approach, volume 13 of Chapman & Hall/CRC
computer and information science series. Chapman &
Hall/CRC, Boca Raton, 2007.

[7] Internet Systems Consortium, Inc. (ISC). BIND 9
Administrator Reference Manual. Internet Systems
Consortium, Inc. (ISC), bind 9.5 edition, 2004-2008.
http://www.isc.org/index.pl?/sw/bind/index.php.

[8] M. D. Mitzenmacher. The power of two choices in
randomized load balancing. PhD thesis, 1996.
Chair-Alistair Sinclair.

[9] P. V. Mockapetris. Domain names - implementation
and specification. 1987. RFC1035
http://www.ietf.org/rfc/rfc1035.txt.

[10] O. Othman and D. C. Schmidt. Issues in the design of
adaptive middleware load balancing. SIGPLAN Not.,
36(8):205–213, 2001.

[11] E. Putrycz. Design and implementation of a portable
and adaptable load balancing framework. In CASCON
’03: Proceedings of the 2003 conference of the Centre
for Advanced Studies on Collaborative research, pages
238–252. IBM Press, 2003.

[12] W3C. Web services description language (wsdl) 1.1.
March 2001. http://www.w3.org/TR/wsdl.

[13] Y.-T. Wang and R. Morris. Load sharing in
distributed systems. IEEE Transactions on
Computers, 34(3):204–217, 1985.

[14] W. Winston. Optimality of the shortest line discipline.
Journal of Applied Probability, 14 No. 1:181–189, Mar.
1977.

8


