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Part I

Introduction

1 Overview

With the emergence of ubiquitous computing, pervasive computing, and all the other

interesting areas which promise network and computer resource access everywhere,

interesting developments can be witnessed. Small devices that fit in the palm of your

hand are able to do complex operations for which super computers were needed a only

a couple of decades ago. The healthcare industry is looking into ways of constantly

monitoring patients while sending this data across the network for a doctor to monitor

- hence allowing patients to recover after surgery at home instead of at the hospital.

Using sensor networks to monitor facilities at companies allows for a constant supervision

in order to reduce maintenance cost and predict faults well in advance. With these

developments however, securing communications across thenetwork becomes ever more

important. However, due to the mobile aspect of many devicesand also the computing

resources available in for instance sensor nodes in a sensornetwork, this can be quite a

challenge. Embedded chips don’t have the same computing resources available then say,

a desktop computer. Battery life in mobile devices is again alimiting factor in what can

be achieved. Cryptography in general is mathematically very intensive, and in order to

allow such resource constrained devices to encrypt the datathat is send over the network,

special care has to be taken as to what form of cryptography one can use, and to optimise

the algorithms used to limit the power consumption and computing cycles required.

In this paper, a form of public key cryptography called elliptic curve cryptography (ECC)

is investigated to determine feasibility for the kind of systems described above. ECC

promises the ability to generate cryptographic keys which provide equivalent strength

compared to other systems, but do so with shorter key lengths. Extensive research into

optimising the algorithms at hand has been done, and a reference implementation has

been made.

It should be noted that the focus lies on the implementation of ECC for medium sized

embedded systems. This means that low end 8 or 16 bit devices are not considered,

but that low power 32 bit devices (typically sub 1 Watt range)are the focus of the

work. The reason for this is the anticipation of better battery life for these devices

while developments towards low power consumption for thesechips is making incredible
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headway. Typical applications for these kinds of chips withthe need to encrypt data

are point-of-sale terminals, HVAC building and control systems, medical instrumentation

and monitors, fire/security control and monitoring systemsand factory and automation

systems.

2 Research Outline

In general, encryption methods are very intensive on memoryand computing power. The

reason for this is are the mathematical operations necessary on really big numbers. While

these operations don’t pose any major issues on the latest consumer personal computer,

embedded systems often only have a fraction of this raw poweravailable. The goal of

this paper is to come up with a way for these devices to communicate with other such

devices in a secure way, that is, with all the communication of data between these devices

encrypted.

From the beginning, ECC has been the most favoured method to achieve this goal. ECC

promises the same level of security for smaller key sizes (and thus smaller numbers), but

the trade-off is an increase in mathematical complexity. Through optimisation, this form

of cryptography has become feasible for embedded systems aswell.

The research in this paper is focused on the development and implementation of an elliptic

curve based cryptographic system for embedded devices withwhich can provide digital

signature, key generation and encryption/decryption. Themain topics to achieve this goal

are the selection and implementation of a suitable ellipticcurve, a cryptographic hash

function and a strong block cypher.
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Part II

Elliptic Curve Cryptography

Since the discovery of RSA (and El-Gamal) their ability to withstand attacks has meant

that these two cryptosystems have become widespread in use.They are being used every

day both for authentication purposes as well as encryption/decryption. Both systems

cover the current security standards - so why invent a new system? Even though ECC

is relatively new, invented independently by Miller and Koblitz in 1985, what makes it

stand apart from RSA and El-Gamal is its ability to be more efficient than those two.

The reason why this is important are the developments in information technology - most

importantly hand held, mobile devices, sensor networks, etc. Somehow, there must be

an way to secure communications generated by these devices,however, their computing

power and memory are not nearly as abundant as on their desktop and laptop counterparts.

A current desktop system has no problems working with 1024 bit keys and higher, but

these small embedded devices do, as we don’t want to spend a lot of their resources and

bandwidth securing traffic. What is needed is a crypto systemwith small keys and small

signature size. ECC has those properties due to the fact thatthere are no known sub-

exponential algorithms for the elliptic curve discrete logarithm problem (ECDLP), which

means we can use shorter keys for security levels where RSA and El-Gamal would need

much bigger keys. As an example, below are two typical keys with the same security

level. The first one is an RSA key, the second one is an ECC key.

RSA (1024 bit):

B52264FB7B9154350F1BE765F2979A13091E539B40167BC8FE58F5AB5C4DF3C8B0CC

06A68BF6BBBA30D777345A48F81AC60F2397EDE31E6BCCDF78A584D0E913EC10F07C

A55D368B44ADBB3B82E3606310083DF41318872196852E5B20FA1C6AB1B44C943E21

ECC (192 bit):

FFDF1C7C598311CC1287836B540FB29AF8A35393797D11C8

As one can see, a 192 bit ECC key offers the same level of security as a 1024 bit RSA key.

Actually, it’s even more secure: Table 1 below gives the equivalent key sizes for ECC and

RSA, provided by the National Institute of Standards and Technology (NIST) [1].

Still, these keys are longer than equivalent symmetric cryptography keys. Table 2 below,

also provided in [1], gives a short comparison.
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ECC key size RSA key size Key size ratio
(bits) (bits)
163 1024 1/6
256 3072 1/12
384 7680 1/20
512 15360 1/30

Table 1: ECC and RSA Equivalent Key Sizes

Bits of Security Symmetric Algorithm RSA ECC
80 2TDEA k = 1024 f = 160−223
112 3TDEA k = 2048 f = 224−255
128 AES-128 k = 3072 f = 256−383
192 AES-192 k = 7680 f = 384−511
256 AES-256 k = 15360 f = 512+

Table 2: Equivalent Key Sizes for Symmetric and Asymmetric Cryptography

It should be clear that in order to provide a security of 80 bits in a public key cryptographic

system, one needs a 160 bit ECC key or a 1024 bit RSA key. It should also be apparent

that key lengths for RSA grow much faster in length than theirECC equivalent.

The way that the elliptic curve operations are defined is whatgives ECC its higher security

at smaller key sizes. An elliptic curve is defined in a standard, two dimensional x,y

Cartesian coordinate system by an equation according to theWeierstrass model as follows:

y2+a1xy+a3y = x3 +a2x2 +a4x+a6

The graph of an elliptic curve can appear for instance as shown in Figure 1.
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x

yy2 = x3−3x+5

Figure 1: An Elliptic Curve

3 Operations on Elliptic Curves

As said before, the security of ECC depends on the difficulty of the Elliptic Curve Discrete

Logarithm Problem. This problem is defined as follows: letP andQ be two points on an

elliptic curve such thatkP = Q, wherek is a scalar. GivenP andQ, it is computationally

infeasible to obtaink, if k is sufficiently large. Hence,k is the discrete logarithm ofQ to

P. We can see that the he main operation involved in ECC is pointmultiplication, namely,

multiplication of a scalark with any pointP on the curve to obtain another pointQ on the

curve.

Each curve has a specially designated pointG called the base point chosen such that a

large fraction of the elliptic curve points are multiples ofit. To generate a key pair, one

selects a random integerk which serves as the private key, and computeskG which serves

as the corresponding public key. For cryptographic application the order ofG, that is the

smallest non-negative numbern such thatnG = O, with O the point at infinity, must be

prime.
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3.1 Point Multiplication

In point multiplication a pointP on the elliptic curve is multiplied with a scalark using

elliptic curve equation to obtain another pointQ on the same elliptic curve, givingkP = Q.

Point multiplication can be achieved by two basic elliptic curve operations, namely point

addition and point doubling. Point addition is defined as adding two pointsP andQ to

obtain another pointR written asR = P +Q. Point doubling is defined as adding a point

P to itself to obtain another pointQ so thatQ = 2P.

Point multiplication is hence achieved as follows: letP be a point on an elliptic curve.

Let k be a scalar that is multiplied with the pointP to obtain another pointQ on the

curve so thatQ = kP. If k = 23 thenkP = 23P = 2(2(2(2P)+ P)+ P)+ P. Thus point

multiplication uses point addition and point doubling repeatedly to find the result. The

above method is called the ’double and add’ method for point multiplication. There are

other, more efficient methods for point multiplication which will be discussed later.

3.2 Point Addition

Point addition is the addition of two pointsP andQ on an elliptic curve to obtain another

pointR on the same elliptic curve. This is demonstrated geometrically in Figure 2 for the

condition thatQ 6=−P.
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x

yy2 = x3−3x+5

P

Q

−R

R = P+Q

Figure 2: Elliptic Curve Addition Operation forQ 6=−P

If Q = -P the line through this point intersects at a point at infinity O. Hence P + (-P) = O.

This is shown in Figure 3. O is the additive identity of the elliptic curve group. A negative

of a point is the reflection of that point with respect to x-axis.
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x

yy2 = x3−3x+5

Q =−P

P

P+(−P) = O
WhereO is the point at Infinity

Figure 3: Elliptic Curve Addition Operation forQ =−P

Analytically, we can perform a point addition as follows. Consider two distinct pointsP

andQ so thatP = (xP,yP) andQ = (xQ,yQ).

Let R = P+Q whereR = (xR,yR), then

xR = s2− xP− xQ

yR =−ya + s(xP− xQ)

s = (yP− yQ)/(xP− xQ), thuss is the slope of the line throughP andQ.

If Q =−P i.e. Q = (xP,−yP) thenP+Q = O whereO is the point at infinity.

If P = Q thenP+Q = 2P then point doubling equations are used.

Also note that the addition is commutative, thusP+Q = Q+P.

3.3 Point Doubling

Point doubling is the addition of a pointP on the elliptic curve to itself to obtain another

point Q on the same elliptic curve. To double a pointP to getQ, i.e. to findQ = 2P,

consider a pointP on an elliptic curve as shown in Figure 4. If they coordinate of the

pointP is not zero then the tangent line atP will intersect the elliptic curve at exactly one

more point−Q. The reflection of the point−Q with respect tox-axis gives the pointQ,
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which is the result of doubling the pointP.

x

yy2 = x3−3x+5

P

−Q

Q

2P = Q

Figure 4: Elliptic Curve Doubling Operation foryP 6= 0
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If the y coordinate of the pointP is zero then the tangent at this point intersects at a point

at infinity O. Hence 2P = O whenyP = 0. This is shown in Figure 5.

x

yy2 = x3−3x+5

P

yP = 0 hence 2P = O
WhereO is the point at Infinity

Figure 5: Elliptic Curve Doubling Operation foryP = 0

Analytically, we can again write this as follows. Consider apointP such thatP = (xP,yP),

whereyP 6= 0.

Let Q = 2P whereQ = (xQ,yQ), Then

xQ = s22xP

yQ =−yP + s(xP− xQ)

s = (3x2
P + a)/(2yP), wheres is the tangent at pointP and a is one of the parameters

chosen with the elliptic curve.

If yP = 0 then 2J = O, whereO is the point at infinity.

4 Finite Fields

The elliptic curve operations defined in the previous section are on real numbers.

Operations over the real numbers are slow and inaccurate dueto rounding errors.

Cryptographic operations have to be fast and accurate. To make operations on elliptic
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curve accurate and more efficient, the elliptic curve cryptography is defined over two

finite fields, also called Galois fields in honor of the founderof finite field theory, Évariste

Galois:

Prime fieldGF(p)

Binary fieldGF(2m)

The field is chosen with finitely large number of points suitedfor cryptographic

operations. Figure 6 shows a graph of the elliptic curvey2 + xy (mod p) = x3 + x2 + 1

(mod p) with p = 191 . Even though the curve is no longer a gently flowing graph,the

algebraic equations for point addition and doubling still apply.

50 100 150 200

50

100

150

200

Figure 6: Elliptic Curvey2 + xy = x3 + x2 +1 overGF(191)

4.1 Operations

4.1.1 Operations over Prime Field Fp

Let Fp be a prime finite field so thatp is an odd prime number, and leta,b ∈ Fp satisfy

4a3+27b2 (mod p) 6= 0. Then an elliptic curveE(Fp) overFp defined by the parameters

a,b ∈ Fp consists of the set of solutions or pointsP = (x,y) for x,y ∈ Fp to the equation:

y2≡ x3+ax+b (mod p)

11



together with the extra pointO at infinity. The equationy2 ≡ x3 + ax + b (mod p) is

called the defining equation ofE(Fp). For a given pointP = (xP,yP), xP is called the x-

coordinate ofP, andyP is called the y-coordinate ofP. The prime numberp is chosen such

that there is a finitely large number of points on the ellipticcurve to make the cryptosystem

secure, usually between 112 and 521 bits.

The number of points onE(Fp) is denoted by #E(Fp). The Hasse Theorem states that:

p+1−2
√

p≤ E(Fp)≤ p+1+2
√

p

It is then possible to define an addition rule to add points onE. The addition rule is

specified as follows:

1. Rule to add the point at infinity to itself:

O+O = O

2. Rule to add the point at infinity to any other point:

(x,y)+O = O+(x,y) = (x,y)∀(x,y) ∈ E(Fp)

3. Rule to add two points with the same x-coordinates when thepoints are either

distinct or have y-coordinate 0:

(x,y)+(x,−y) = O∀(x,y) ∈ E(Fp)

which also means that the negative of the point(x,y) is−(x,y) = (x,−y)

4. Rule to add two points with different x-coordinates: Let(x1,y1) ∈ E(Fp) and

(x2,y2) ∈ E(Fp) be two points such thatx1 6= x2. Then(x1,y1)+(x2,y2) = (x3,y3),

where:

x3≡ λ2− x1− x2 (mod p)

y3≡ λ(x1− x3)− y1 (mod p)

λ =
y2− y1

x2− x1
(mod p)

5. Rule to add a point to itself (double a point): Let(x1,y1) ∈ E(Fp) be a point with
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y1 6= 0. Then(x1,y1)+(x1,y1) = (x3,y3), where:

x3≡ λ2−2x1 (mod p)

y3≡ λ(x1− x3)− y1 (mod p)

λ =
3x2

1 +a

2y1
(mod p)

The set of points onE(Fp) forms a group under this addition rule. Furthermore the group

is Abelian, meaning thatP1 + P2 = P2 + P1 for all points P1,P2 ∈ E(Fp). Notice that

the addition rule can always be computed efficiently using simple field arithmetic. What

about scalar multiplication of elliptic curve points? These can be computed efficiently

using the addition rule together with the double-and-add algorithm or one of its variants.

4.1.2 Operations on Binary Field F2m

Let F2m be a characteristic 2 finite field, and leta,b ∈ F2m satisfyb 6= 0 in F2m. Then a

(non-supersingular) elliptic curveE(F2m) over F2m defined by the parametersa,b ∈ F2m

consists of the set of solutions or pointsP = (x,y) for x,y ∈ F2m to the equation:

y2+ xy = x3 +ax2 +b

whereb 6= 0 together with an extra pointO at infinity. (Here the only elliptic curves

overF2m of interest are non-supersingular elliptic curves) Here the elements of the finite

field are integers of length at mostm bits. These numbers can be considered as a binary

polynomial of degreem− 1. In this binary polynomial the coefficients can only be 0

or 1. All the operation such as addition, substation, division, multiplication involves

polynomials of degreem−1 or lesser.

The number of points onE(F2m) is denoted by #E(F2m). The Hasse Theorem states that:

2m +1−2
√

2m ≤ E(F2m)≤ 2m +1+2
√

2m

It is again possible to define an addition rule to add points onE as it was done forE(Fp).

The addition rule is specified as follows:

1. Rule to add the point at infinity to itself:

O+O = O
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2. Rule to add the point at infinity to any other point:

(x,y)+O = O+(x,y) = (x,y)∀(x,y) ∈ E(F2m)

3. Rule to add two points with the same x-coordinates when thepoints are either

distinct or have x-coordinate 0:

(x,y)+(x,x+ y) = O∀(x,y) ∈ E(F2m)

which also means that the negative of the point(x,y) is−(x,y) = (x,x+ y)

4. Rule to add two points with different x-coordinates: Let(x1,y1) ∈ E(F2m) and

(x2,y2)∈ E(F2m) be two points such thatx1 6= x2. Then(x1,y1)+(x2,y2) = (x3,y3),

where:

x3 = λ2+λ+ x1 + x2 +a in F2m

y3 = λ(x1,x3)+ x3+ y1 in F2m

λ≡ y1 + y2

x1 + x2
in F2m

5. Rule to add a point to itself (double a point): Let(x1,y1) ∈ E(F2m) be a point with

x1 6= 0. Then(x1,y1)+(x1,y1) = (x3,y3), where:

x3 = λ2+λ+a in F2m

y3 = λ(x2
1)+(λ+1)x3 in F2m

λ≡ x1+
y1

x1
in F2m

The set of points onE(F2m) forms an Abelian group under this addition rule. Notice that

the addition rule can always be computed efficiently using simple field arithmetic. As

before scalar multiplication is the process of addingP to itself k times. The result of this

scalar multiplication is denoted kP and can be computed efficiently using the addition rule

together with the double-and-add algorithm or one of its variants.

4.2 Domain Parameters

Apart from the curve parameters a and b, there are other parameters that must be agreed by

both parties involved in secured and trusted communicationusing ECC. These are domain

parameters. The domain parameters for prime fields and binary fields are described below.
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4.2.1 Domain Parameters for Fp

The domain parameters for Elliptic curve overFp are p, a, b, G, n andh. p is the prime

number defined for finite fieldFp while a andb are the parameters defining the curve

y2 (mod p) = x3 + ax + b (mod p). G is the generator point(xG,yG), a point on the

elliptic curve chosen for cryptographic operations andn is the order of the elliptic curve.

The scalar for point multiplication is chosen as a number between 0 andn−1. h is the

co-factor whereh =
#E(Fp)

n . #E(Fp) is the number of points on an elliptic curve.

4.2.2 Domain Parameters for F2m

The domain parameters for elliptic curve overF2m arem, f (x), a, b, G, n andh. m is

an integer defined for finite fieldF2m. The elements of the finite fieldF2m are integers

of length at mostm bits. f (x) is the irreducible polynomial, known as the reduction

polynomial, of degreem used for elliptic curve operations whilea andb are the parameters

defining the curvey2 + xy = x3 + ax2 + b. G is again the generator point(xG,yG) anda

point on the elliptic curve chosen for cryptographic operations whilen is the order of the

elliptic curve. The scalar for point multiplication is chosen as a number between 0 and

n−1. h is the co-factor whereh =
#E(F2m)

n . #E(F2m) is the number of points on an elliptic

curve.

4.3 Choosing the Field

Should we choose a curve over the prime fieldFp or the binary fieldF2m? This decision has

to be made based on the way the system is going to be implemented. While curves over

the prime field can be more efficient to implement in software,there are optimisations

possible[2] that puts the efficiency of curves over a binary field on par with those over a

prime field. This paper describes an ECC system using a curve over the binary field. The

lack of existing implementations of ECC over binary fields compared to ECC over prime

fields for low power devices gave an extra challenge and motivation for the paper.
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Part III

Practical Implementation

The goals of the system we want to implement can be summarisedas follows:

• Portable: the system should be easy to port to different hardware platforms

• Fast: optimisations should be made where possible, howeverassembly code should

be limited as it hampers our first requirement.

• Efficient: use as little system resources as possible, yet don’t overuse assembly

language as this hinders portability.

Besides these, the following functionality should be implemented:

• Signing and verification for authentication purposes

• Encryption and decryption of data

5 Requirements and Design

Due to the computational overhead of ECC, and for public key cryptography in general,

it is not really feasible to encrypt whole messages this way.Instead, a combination

of symmetric and asymmetric methods are employed. In essence, the public key

cryptography system based on elliptic curve cryptography is used to encrypt a symmetric

key. AES is used on the symmetric side to encrypt and decrypt the actual data.

Thus, the recipient of the data first generates a public/private key-pair. The public keyP

is generated by such thatP = dQ where the multiplierd is the hashed secret password, in

essence, the private key.Q is the fixed point on the curve, common to all communicating

entities. The sender of the message suggests a common secretkey K so thatK = kQ

wherek is a random multiplier.k can then be communicated to the receiver in the form

of messageM = kP, where the receiver can recover the symmetric keyK using its private

keyd:

e = d−1modp

Me = (kP)e = (kdQ)e = (kQ)de = K

To implement the system, the three modules (symmetric, asymmetric and hash function)

were chosen as follows:
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• The asymmetric module, based on an elliptic curve over(2191)

• The symmetric key module, based on AES (Rijndael) with a 192 bits key in counter

mode

• 192 bit TIGER[3] hash function

In other words, the cryptographic system provides a 192bit asymmetric key length for

the public key operation coupled with a 192 bit symmetric keyencryption.

5.1 Asymmetric Module

To get ECC working, we need to identify an elliptic curve suitable for cryptographic

purposes.

The equation of the elliptic curve used is defined as follows:

y2 + xy = x3 + x2 +(s12+ s10+ s6 + s2+1)

The primitive polynomial is:

s191+ s9+1

The order of the fixed point on the curve is a number of 190 bits,p, which satisfies

the MOV[4] (from Menezes, Okamoto and Vanstone) condition until 100 iterations (the

minimum is 9). This means the MOV algorithm for attacking elliptic curve cryptosystems

which is completed in sub-exponential time for super-singular elliptic curves does not

apply.

The curve was found using Schoof’s algorithm[5], with an implementation provided in

the Multiprecision Integer and Rational Arithmetic C/C++ Library (MIRACL) by Shamus

Software [6].

The points of the curve are pairs of polynomials(x,y) but for storage, only the polynomial

x is stored, and one bit that decides which of the two solutionsto the quadratic equation

for y one needs to pick.

5.1.1 Digital Signatures

The DSA algorithm of elliptic curves (Elliptic Curve Digital Signature Algorithm) is used

to generate the signatures. The algorithm generates a pair of numbers,(r,s) from the
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private key of the user,d, and the hashh of the message being signed, as follows forr:

r = [kQ]xmodp

Wherek is a random multiplier. That is,r is the result of converting the polynomialx to

a number of the product of the elliptic curvekQ. On the other hand fors:

s = k(h+dr)−1modp

The message and the pair(r,s) are sent to the addressee, which verifies the signature by

calculating the hash of the message,h, and taking the public key of the sender,P. Then

the following calculation is performed:

r′ = [(hs)Q+(rs)P]xmodp

If r′ = r then the signature is accepted as a valid. This is easily verifiable by replacingP

ands in r′.

5.2 Symmetric Module

Although the names AES and Rijndael are often used to indicate the same system, there

is a significant difference. Rijndael supports a larger range of block and key sizes; AES

has a fixed block size of 128 bits and a key size of 128, 192, or 256 bits, where instead

Rijndael can be specified with key and block sizes in any multiple of 32 bits, with a

minimum of 128 bits and a maximum of 256 bits. Since a byte normally equals 8 bits,

the fixed block size of 128 bits is normally 16 bytes. AES operates on a 44 array of bytes,

termed the state (versions of Rijndael with a larger block size have additional columns in

the state). Most AES calculations are done in a special finitefield. The cipher is specified

in terms of repetitions of processing steps that are appliedto make up rounds of keyed

transformations between the input plain-text and the final output of cipher-text. A set of

reverse rounds are applied to transform cipher-text back into the original plain-text using

the same encryption key.

AES in counter mode (AES-CTR) offers a number of features over other block cipher

modes and stream ciphers, among others, it provides a savingof 17 to 32 bytes per record

compared to Cipher Block Chaining (AES-CBC) used in Transport Layer Security (TLS).

16 bytes are saved from not having to transmit an explicit initialisation vector (IV), and

another 1 to 16 bytes are saved from the absence of the paddingblock.
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5.3 Hash Module

The emphasis when researching an appropriate hash functionwas placed on speed.

TIGER is one of the fastest hash functions suitable for cryptographic purposes, at least in

software implementations. The size of the hash value is 192 bits. This makes a perfect

match for the 190 bit asymmetric module and a 192 bit AES implementation. While

TIGER was originally developed for 64-bit platforms, it canbe easily adapted to 32-bit

platforms. However, due to the size of TIGER’s S-boxes (4 S-boxes, each with 256 64-bit

entries totals 8 KB) means that implementation in hardware or smaller micro-controllers

is not evident.

6 Algorithms

The most important factor to consider to make ECC feasible onrelatively low-powered

devices is the choice of algorithms in order to provide optimised arithmetic. This section

will briefly introduce some of the key algorithms used in the implementation.

6.1 Karatsuba Multiplication

Multiplication of two elements in the polynomial basis is a very intensive operation.

Using the straightforward method to multiply two elements in GF(pm) requires up to

m2 multiplications inGF(p) and up tom2m additions inGF(p). Applying a method

developed by Karatsuba and Ofman[7], the amount of multiplications can be reduced in

exchange for an amount of additions. This trade-off will be more efficient for as long

as the the time ratio for multiplication is higher than addition. The overhead in breaking

down and recombining the parts involved in Karatsuba make itless suited for hardware

implementations, but it is often used in software.

Let A(x) andB(x) be two polynomials of degree one.

A(x) = a1x+a0

B(x) = b1x+b0
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The traditional method for multiplyingA(x) andB(x) would require the following steps:

D0 = a0b0

D1 = a0b1

D2 = a1b0

D3 = a1b1

After which the productC(x) = A(x).B(x) is calculated:

C(x) = D3x2 +(D2+D1)x+D0

Following the Karatsuba method, we can start by taking the two polynomials and

calculating the following products:

E0 = a0b0

E1 = a1b1

E2 = (a0+a1)(b0+b1)

The resultC(x) = A(x).B(x) is then calculated as follows:

C(x) = E1x2 +(E2−E1−E0)x+E0

The end result is that in the traditional method requires four multiplications and one

addition, however, the Karatsuba method requires three multiplications and four additions.

We thus exchanged one multiplication for three additions. In GF(2m), addition is

especially easy, since addition and subtraction modulo 2 are the same thing and can be

done using a basic XOR operation.

6.2 Itoh-Tsujii Inversion

Inversion operations in the field are costly operation. While originally developed for use

in normal basis representation overGF(2m), the Itoh-Tsujii Inversion[8], is generic and

can be applied for other bases such as the polynomial basis. The general form of the

algorithm is as follows:

A−1 = (Ar)−1Ar−1 wherer =
pm−1

p−1
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The algorithm presented in Algorithm 1 below illustrates the general workings of this

algorithm.

Algorithm 1: Itoh-Tsujii Inversion

Input: A ∈ GF(pm)
Output: A−1

r← (pm−1)/(p−1)1

computeAr−1 in GF(pm)2

computeAr = Ar−1A3

compute(Ar)−1 in GF(p)4

computeA−1 = (Ar)−1Ar−15

returnA−16

This algorithm is fast because steps 3 and 5 both involve operations in the sub-field

GF(p). Similarly, if a small value ofp is used, a look-up table can be used for inversion

in step 4. The majority of time spent in this algorithm is in step 2, the first exponentiation.

This is one reason why this algorithm is well-suited for the normal basis, since squaring

and exponentiation are relatively easy in that basis. However, sincer is known ahead of

time, an efficient addition chain for the exponentiation in step 2 can be precomputed and

hard-coded into the algorithm.

6.3 de Rooij Point Multiplication

As pointed out before, the most occurring operation in ECC ispoint multiplication;

Q = kP. For large values ofk, computingkP is an expensive task. Some methods

used for ordinary integer exponentiation can be adapted to improve these operations. The

(binary)-double-and-add algorithm [9] is perhaps the mostwell-known algorithms in this

regard. It is also known as the square-and-multiply algorithm or binary exponentiation

outside of the application in additive groups. It has a complexity of log2(k) +WH(k)

group operations, whereWH is the Hamming weight of the multiplierk. On average, we

can expect this algorithm to require 1.5log2(k) group operations. Using more advanced

methods, such as signed digit, k-ary or sliding window, the complexity may be reduced to

approximately 1.2log2(k) group operations on average [10]. However, it can get better,

if the point is known in advance. One of the important applications of ECC is providing

digital signatures. The Elliptic Curve Digital Signature Algorithm (ECDSA) [11] works

by multiplying a fixed curve point by the user-generated private key as its main operation.

Because the curve point is known ahead of time, pre-computations may be performed

to speed up the signing process. Using a method devised by de Rooij [12], we are able
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to reduce the number of group operations necessary by a factor of four over the binary-

double-and-add algorithm. The method, known as fixed point multiplication using pre-

computation and vector addition chains, is implemented as shown in Algorithm 2.

Algorithm 2: de Rooij Fixed Point Multiplication using Pre-Computation
and Vector Addition Chains

Require: {b0A,b1A, ...,btA},A ∈ E(GF(pm)), and s =
t

∑
i=0

sib
i

Ensure: C = sA,C ∈ E(GF(pm))

DefineM ∈ [0, t] such thatzM ≥ zi for all 0≤ i≤ t1

DefineN ∈ [0, t],N 6= M such thatzN ≥ zi for all 0≤ i≤ t, i = M2

for i← 0 to t do3

Ai← biA4

zisi5

end6

DetermineM andN for {z0,z1, ...,zt}7

while zN ≥ 0 do8

q← ⌊ZM/ZN⌋9

AN ← qAM +AN (Here we apply binary-double-and-add)10

zM← zM modzN11

DetermineM andN for {z0,z1, ...,zt}12

end13

C← zMAM14
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Part IV

Conclusions and Future Work

7 Results

The cryptographic system was implemented on a couple of different platforms to provide

a clear picture of the performance one can expect on different embedded systems. All

systems are running Linux, with either GNU Libc or uClibc. The target platforms consists

of:

• Nokia N800, TI OMAP 2420 clocked at 330MHz (GNU Libc)

• Freescale MPC5200B clocked at 400MHz (GNU Libc)

• Renesas SH7203 clocked at 200MHz (uClibc)

• Freescale ColdFire MCF54455 clocked at 266MHz (GNU Libc)

• Freescale ColdFire MCF52277 clocked at 160MHz (uClibc)

Table 3 gives an overview of the time each CPU needs to calculate field operations.

The most used operations here include point multiplication, squaring, solving a quadratic

equation to find the correct y coordinate of a point and inversion.

multiplication squaring quad-solving inversion
MPC5200B 0.0014 s 0.0000 s 0.0500 s 0.0500 s
Nokia N800 0.0043 s 0.0000 s 0.1100 s 0.0300 s

SH7203 0.0057 s 0.0100 s 0.2700 s 0.1300 s
MCF54455 0.0214 s 0.0050 s 0.4800 s 0.3500 s
MCF52277 0.0486 s 0.0250 s 1.1200 s 0.7800 s

Table 3: Field Operations

ECC scalar multiplicationQ = kP time needed is shown in Table 4. This is the main

factor limiting speed in the rest of the cryptographic system.

The time needed to perform a set of cryptographic operations, including key generation,

encryption/decryption and signature generation/verification is given in Table 5.
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scalar multiplication
Nokia N800 0.035 s
MPC5200B 0.037 s

SH7203 0.088 s
MCF54455 0.297 s
MCF52277 0.737 s

Table 4: Scalar Multiplication

Encrypt-Decrypt Sign/Verify Key generation
Nokia N800 0.122 s/cycle 0.087 s/cycle 0.036 s/key
MPC5200B 0.130 s/cycle 0.100 s/cycle 0.030 s/key

SH7203 0.303 s/cycle 0.223 s/cycle 0.086 s/key
MCF54455 1.021 s/cycle 0.763 s/cycle 0.300 s/key
MCF52277 2.559 s/cycle 1.928 s/cycle 0.761 s/key

Table 5: Cryptographic Operations

It should be noted that the seemingly slow execution on ColdFire is most likely due to

missing optimisations in the GCC compiler suite for this kind of CPU. Other compilers

with specific optimisations for ColdFire (such as CodeWarrior) could result in better

performance, but was not tested due to lack of time.

8 Future Work

The focus of future work will be on the development of an efficient Public Key

Infrastructure (PKI) with implementations for sensor networks and other applications

where large quantities of communicating nodes are present.Management of a large

number of keys especially while certifying every key is a major obstacle that needs to

be tackled before easy and large scale deployment becomes feasible.
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