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Part |

| ntroduction

1 Overview

With the emergence of ubiquitous computing, pervasive aging, and all the other
interesting areas which promise network and computer resoaccess everywhere,
interesting developments can be witnessed. Small devidit in the palm of your
hand are able to do complex operations for which super coenpwiere needed a only
a couple of decades ago. The healthcare industry is lookitmyways of constantly
monitoring patients while sending this data across the owdvior a doctor to monitor
- hence allowing patients to recover after surgery at honséead of at the hospital.
Using sensor networks to monitor facilities at companiksad for a constant supervision
in order to reduce maintenance cost and predict faults welidvance. With these
developments however, securing communications acrossetiark becomes ever more
important. However, due to the mobile aspect of many dewacesalso the computing
resources available in for instance sensor nodes in a saassork, this can be quite a
challenge. Embedded chips don’t have the same computiogness available then say,
a desktop computer. Battery life in mobile devices is agdimding factor in what can
be achieved. Cryptography in general is mathematically i@ensive, and in order to
allow such resource constrained devices to encrypt thetdatt#s send over the network,
special care has to be taken as to what form of cryptograplyan use, and to optimise
the algorithms used to limit the power consumption and cdinguycles required.

In this paper, a form of public key cryptography called elégurve cryptography (ECC)

is investigated to determine feasibility for the kind of ®mas described above. ECC
promises the ability to generate cryptographic keys whidvipe equivalent strength
compared to other systems, but do so with shorter key lendik&ensive research into
optimising the algorithms at hand has been done, and a nefenenplementation has
been made.

It should be noted that the focus lies on the implementatfoB@C for medium sized

embedded systems. This means that low end 8 or 16 bit deweesca considered,

but that low power 32 bit devices (typically sub 1 Watt rangeg the focus of the

work. The reason for this is the anticipation of better bgttée for these devices

while developments towards low power consumption for tlebsges is making incredible



headway. Typical applications for these kinds of chips wvifit need to encrypt data
are point-of-sale terminals, HVAC building and controltgyss, medical instrumentation
and monitors, fire/security control and monitoring systend factory and automation
systems.

2 Research QOutline

In general, encryption methods are very intensive on merandycomputing power. The
reason for this is are the mathematical operations negessaeally big numbers. While
these operations don’t pose any major issues on the latestiower personal computer,
embedded systems often only have a fraction of this raw pewaitable. The goal of
this paper is to come up with a way for these devices to comeatmiwith other such
devices in a secure way, that is, with all the communicatiodata between these devices
encrypted.

From the beginning, ECC has been the most favoured methazhteve this goal. ECC
promises the same level of security for smaller key sized (ans smaller numbers), but
the trade-off is an increase in mathematical complexityotigh optimisation, this form
of cryptography has become feasible for embedded systemeslas

The research in this paper is focused on the developmenirgidmentation of an elliptic
curve based cryptographic system for embedded deviceswhitth can provide digital
signature, key generation and encryption/decryption.mham topics to achieve this goal
are the selection and implementation of a suitable elliptiove, a cryptographic hash
function and a strong block cypher.
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Elliptic Curve Cryptography

Since the discovery of RSA (and EI-Gamal) their ability tahgtand attacks has meant
that these two cryptosystems have become widespread iTheg.are being used every
day both for authentication purposes as well as encrymtemmyption. Both systems
cover the current security standards - so why invent a netesy%s Even though ECC
is relatively new, invented independently by Miller and HKibin 1985, what makes it
stand apart from RSA and El-Gamal is its ability to be morecefit than those two.
The reason why this is important are the developments innmdition technology - most
importantly hand held, mobile devices, sensor networks, 8omehow, there must be
an way to secure communications generated by these dekimesyer, their computing
power and memory are not nearly as abundant as on their greshtidaptop counterparts.
A current desktop system has no problems working with 1024eys and higher, but
these small embedded devices do, as we don’'t want to spendtheir resources and
bandwidth securing traffic. What is needed is a crypto systémsmall keys and small
signature size. ECC has those properties due to the facthbi are no known sub-
exponential algorithms for the elliptic curve discreteddathm problem (ECDLP), which
means we can use shorter keys for security levels where RBAbG&amal would need
much bigger keys. As an example, below are two typical keyh tie same security
level. The first one is an RSA key, the second one is an ECC key.

RSA (1024 bit):

B52264FB7B9154350F1BE765F2979A13091E539B40167BC8FES8F5AB5 CADF3C8BOCC
06A68BF6BBBA30D777345A48F81ACB0F2397EDE31E6BCCDF78A584D0E913ECLOF07C
A550368B44ADBB3B32E3606310083DF41318872196852E5B20FA1 C5AB1BA4CO43E21

ECC (192 bit):
FFDF1C7C598311CC1287836B540FB29AF8A35393797D11C8

As one can see, a 192 bit ECC key offers the same level of $gasra 1024 bit RSA key.
Actually, it's even more secure: Table 1 below gives the emjent key sizes for ECC and
RSA, provided by the National Institute of Standards anchiietogy (NIST) [1].

Still, these keys are longer than equivalent symmetrictogqaphy keys. Table 2 below,
also provided in [1], gives a short comparison.
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ECC key sizel RSA key size| Key size ratio
(bits) (bits)
163 1024 1/6
256 3072 1/12
384 7680 1/20
512 15360 1/30

Table 1. ECC and RSA Equivalent Key Sizes

Bits of Security| Symmetric Algorithm|  RSA ECC
80 2TDEA k=1024 | f =160—223
112 3TDEA k=2048 | f =224—255
128 AES-128 k=3072 | f =256—383
192 AES-192 k=7680 | f =384—511
256 AES-256 k=15360| f =512+

Table 2: Equivalent Key Sizes for Symmetric and Asymmetngg@graphy

It should be clear that in order to provide a security of 88 lmita public key cryptographic
system, one needs a 160 bit ECC key or a 1024 bit RSA key. Itldlatso be apparent
that key lengths for RSA grow much faster in length than tB€C equivalent.

The way that the elliptic curve operations are defined is \ghats ECC its higher security
at smaller key sizes. An elliptic curve is defined in a staddavo dimensional x,y
Cartesian coordinate system by an equation according Wéherstrass model as follows:

Y2+ agxy -+ agy = X° + apx? + agx -+ ag

The graph of an elliptic curve can appear for instance as shiowigure 1.
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Figure 1: An Elliptic Curve

3 Operationson Elliptic Curves

As said before, the security of ECC depends on the difficdltg@Elliptic Curve Discrete
Logarithm Problem. This problem is defined as follows:RetndQ be two points on an
elliptic curve such thakP = Q, wherek is a scalar. Givel andQ, it is computationally
infeasible to obtairk, if k is sufficiently large. Hence is the discrete logarithm @ to

P. We can see that the he main operation involved in ECC is pauttiplication, namely,
multiplication of a scalak with any pointP on the curve to obtain another pof@ton the
curve.

Each curve has a specially designated p@rdalled the base point chosen such that a
large fraction of the elliptic curve points are multiplesiofTo generate a key pair, one
selects a random integkewhich serves as the private key, and compu@svhich serves
as the corresponding public key. For cryptographic apptioahe order ofG, that is the
smallest non-negative numbesuch thainG = O, with O the point at infinity, must be
prime.



3.1 Point Multiplication

In point multiplication a poinP on the elliptic curve is multiplied with a scal&rusing
elliptic curve equation to obtain another po@bn the same elliptic curve, givirid® = Q.
Point multiplication can be achieved by two basic ellipticve operations, namely point
addition and point doubling. Point addition is defined asimgldwo pointsP andQ to
obtain another poirR written asR = P+ Q. Point doubling is defined as adding a point
P to itself to obtain another poir so thatQ = 2P.

Point multiplication is hence achieved as follows: Rebe a point on an elliptic curve.
Let k be a scalar that is multiplied with the poiRtto obtain another poin® on the
curve so thaf) = kP. If k =23 thenkP = 23P = 2(2(2(2P) + P) + P) + P. Thus point
multiplication uses point addition and point doubling rataelly to find the result. The
above method is called the 'double and add’ method for poutiplication. There are
other, more efficient methods for point multiplication winiwill be discussed later.

3.2 Point Addition

Point addition is the addition of two poinBsandQ on an elliptic curve to obtain another
pointR on the same elliptic curve. This is demonstrated geomdiricaFigure 2 for the
condition thatQ # —P.



Figure 2: Elliptic Curve Addition Operation fdp # —P

If Q = -P the line through this point intersects at a point &nity O. Hence P + (-P) = O.
This is shown in Figure 3. O is the additive identity of theit curve group. A negative
of a point is the reflection of that point with respect to xsaxi



Y2 =x3—3x+5 y |

P+(-P)=0
WhereO is the point at Infinity

Figure 3: Elliptic Curve Addition Operation f@p = —P

Analytically, we can perform a point addition as follows. riGader two distinct point®
andQ so thatP = (xp,yp) andQ = (Xq, Yq).

LetR= P+ Q whereR= (xg,yr), then

XR = S — Xp — XQ

YR = —Ya+S(Xp — XQ)

s= (Yrp —Yq)/(Xp —Xg), thussis the slope of the line throughandQ.

If Q= —Pi.e.Q= (xp,—Yyp) thenP+ Q = O whereO is the point at infinity.

If P=QthenP+ Q = 2P then point doubling equations are used.

Also note that the addition is commutative, tHus Q = Q+ P.

3.3 Point Doubling

Point doubling is the addition of a poiRton the elliptic curve to itself to obtain another
point Q on the same elliptic curve. To double a poito getQ, i.e. to findQ = 2P,
consider a poinP on an elliptic curve as shown in Figure 4. If thecoordinate of the
pointP is not zero then the tangent lineRwill intersect the elliptic curve at exactly one
more point—Q. The reflection of the point-Q with respect toc-axis gives the poin@,



which is the result of doubling the poiRt

Figure 4: Elliptic Curve Doubling Operation fgp # 0



If the y coordinate of the poir® is zero then the tangent at this point intersects at a point
at infinity O. Hence P = O whenyp = 0. This is shown in Figure 5.

y2=x3—3x+5

yp=0hence P=0
WhereOQ is the point at Infinity

X

Figure 5: Elliptic Curve Doubling Operation fgp = 0

Analytically, we can again write this as follows. ConsidgrantP such thaP = (xp,yp),
whereyp # 0.

Let Q = 2P whereQ = (Xg,Yq), Then

XQ = 522Xp

YQ = —Yp+S(x —XQ)

s= (3x3+a)/(2yp), wheres is the tangent at poirf® anda is one of the parameters
chosen with the elliptic curve.

If yp =0 then 2 = O, whereQ is the point at infinity.

4 FiniteFields

The elliptic curve operations defined in the previous sectiwe on real numbers.
Operations over the real numbers are slow and inaccurateta@ueunding errors.
Cryptographic operations have to be fast and accurate. k& mperations on elliptic
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curve accurate and more efficient, the elliptic curve crgmphy is defined over two
finite fields, also called Galois fields in honor of the foundinite field theory, Evariste
Galois:

Prime fieldGF (p)

Binary field GF (2™)

The field is chosen with finitely large number of points suited cryptographic
operations. Figure 6 shows a graph of the elliptic cufe- xy (mod p) = x3+x2+1
(mod p) with p= 191 . Even though the curve is no longer a gently flowing gréph,
algebraic equations for point addition and doubling splbly.

200

1508

. o o . (14
100~ ° ° ° o o e

L]
L]
50— . . oo ®e

Figure 6: Elliptic Curvey? +xy = x>+ x? 4- 1 overGF (191)

4.1 Operations
4.1.1 Operationsover PrimeField F,

Let Fp be a prime finite field so that is an odd prime number, and latb < F, satisfy
4a3+270% (mod p) # 0. Then an elliptic curv&(Fp) overFy defined by the parameters
a,b € Fp consists of the set of solutions or poifts= (x,y) for x,y € Fp to the equation:

y’=x>+ax+b (modp)

11



together with the extra poir® at infinity. The equatiory’ = x3 +ax+b (mod p) is
called the defining equation &(F,). For a given poinP = (xp,yp), Xp is called the x-
coordinate oP, andyp is called the y-coordinate &. The prime numbep is chosen such
that there is afinitely large number of points on the ellipticve to make the cryptosystem
secure, usually between 112 and 521 bits.

The number of points o&(Fp) is denoted by E(Fp). The Hasse Theorem states that:

p+1-2/p<E(Fp) <p+1+2,p

It is then possible to define an addition rule to add point€€onThe addition rule is
specified as follows:

1. Rule to add the point at infinity to itself:

0+0=0

2. Rule to add the point at infinity to any other point:
(X7y) +O =0+ <X7y) = (X,y)V(X,y) € E(Fp)

3. Rule to add two points with the same x-coordinates whenpthiets are either
distinct or have y-coordinate O:

(X.Y) + (x,—y) = O¥(x,y) € E(Fp)

which also means that the negative of the poiqy) is —(x,y) = (x, —y)

4. Rule to add two points with different x-coordinates: Le&{,y,) € E(Fp) and
(X2,¥2) € E(Fp) be two points such that # Xo. Then(xy,y1) + (X2,¥2) = (X3,Y3),
where:

X3 = )\2—X1—X2 (mod p)

y3=A(X1—X3)—y1 (mod p)
)\ — YZ—yl
X2 — X1

(mod p)

5. Rule to add a point to itself (double a point): L(e{,y1) € E(Fp) be a point with
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y1 # 0. Then(x1,y1) + (X1,¥1) = (X3,Y3), where:

x3=A>—2x; (mod p)
Y3 = )\(Xl — X3) -V (mod p)
3% +a

= 2y1

(mod p)

The set of points o& (Fp) forms a group under this addition rule. Furthermore the grou
is Abelian, meaning thaP; + P, = P> + Py for all pointsP1,P, € E(Fp). Notice that
the addition rule can always be computed efficiently usingpée field arithmetic. What
about scalar multiplication of elliptic curve points? Thesan be computed efficiently
using the addition rule together with the double-and-addrhm or one of its variants.

4.1.2 Operationson Binary Field Fom

Let Fom be a characteristic 2 finite field, and &t € Fom satisfyb £ 0 in Fom. Then a
(non-supersingular) elliptic curvé(Fm) over Fom defined by the parameteasb € Fom
consists of the set of solutions or poifts= (x,y) for X,y € Fom to the equation:

Y +xy=x"+ax+b

whereb # 0 together with an extra poir® at infinity. (Here the only elliptic curves
over Fom of interest are non-supersingular elliptic curves) Heeedlements of the finite
field are integers of length at mastbits. These numbers can be considered as a binary
polynomial of degrean— 1. In this binary polynomial the coefficients can only be 0
or 1. All the operation such as addition, substation, dansimultiplication involves
polynomials of degreen— 1 or lesser.

The number of points o&(Fom) is denoted by E(Fom). The Hasse Theorem states that:

2M 41— 2/2M < E(Fom) < 2™+ 1+ 2y/2M

It is again possible to define an addition rule to add pointk @s it was done foE (Fp).
The addition rule is specified as follows:

1. Rule to add the point at infinity to itself:

0+0=0

13



. Rule to add the point at infinity to any other point:
(%) +0=0+(xy) = (xY)V(xy) € E(Fam)

. Rule to add two points with the same x-coordinates whenpthiets are either
distinct or have x-coordinate O:

(X%,Y) + (X, X+Y) = OV(X,y) € E(Fom)

which also means that the negative of the pdiy) is —(x,y) = (X,X+Y)

. Rule to add two points with different x-coordinates: L&t y1) € E(Fm) and

(X2,Y2) € E(Fom) be two points such tha # x2. Then(x,y1) + (X2,y2) = (X3, Y3),
where:

X3 =AM+ A+X+X+a in Fom

Y3 =A(X1,X3) +X3+y1 in Fom

A=A e
X1+ X2

. Rule to add a point to itself (double a point): L&t,y1) € E(Fom) be a point with
X1 # 0. Then(x1,y1) + (X1,Y1) = (X3,¥3), where:

x3=MA2+A+ain Fom

y3=AE)+ (A +1)xz in Fom
A=x+ 22 in Fom
X1

The set of points oife (Fom) forms an Abelian group under this addition rule. Notice that
the addition rule can always be computed efficiently usimgpée field arithmetic. As
before scalar multiplication is the process of addii itselfk times. The result of this
scalar multiplication is denoted kP and can be computedesitiy using the addition rule
together with the double-and-add algorithm or one of itsards.

4.2 Domain Parameters

Apart from the curve parameters a and b, there are other pteasithat must be agreed by
both parties involved in secured and trusted communicasimy ECC. These are domain
parameters. The domain parameters for prime fields andyfiedéds are described below.

14



4.2.1 Domain Parametersfor F,

The domain parameters for Elliptic curve o¥gyarep, a, b, G, nandh. pis the prime
number defined for finite fielt, while a andb are the parameters defining the curve
y? (mod p) = x>+ ax+b (modp). G is the generator pointxs,ys), a point on the
elliptic curve chosen for cryptographic operations ans the order of the elliptic curve.
The scalar for point multiplication is chosen as a numbewbeh 0 anch— 1. his the

co-factor wherdn = w. #E (Fp) is the number of points on an elliptic curve.

4.2.2 Domain Parametersfor Fom

The domain parameters for elliptic curve oer arem, f(x), a, b, G, nandh. mis
an integer defined for finite fieltbm. The elements of the finite fielBbm are integers
of length at mosim bits. f(x) is the irreducible polynomial, known as the reduction
polynomial, of degreenused for elliptic curve operations whigeandb are the parameters
defining the curve? +xy = x> +ax* 4+ b. G is again the generator poifitg,ys) anda
point on the elliptic curve chosen for cryptographic opers whilen is the order of the
elliptic curve. The scalar for point multiplication is clessas a humber between 0 and
HE (Fom)

n—1. his the co-factor wherl = =—-2=. #E(Fm) is the number of points on an elliptic

curve.

4.3 ChoosingtheField

Should we choose a curve over the prime figlar the binary field-m? This decision has
to be made based on the way the system is going to be impledhémieile curves over
the prime field can be more efficient to implement in softwénere are optimisations
possible[2] that puts the efficiency of curves over a binaldfon par with those over a
prime field. This paper describes an ECC system using a cwerloe binary field. The
lack of existing implementations of ECC over binary fieldsngared to ECC over prime
fields for low power devices gave an extra challenge and i for the paper.
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Part |11

Practical | mplementation

The goals of the system we want to implement can be summasstallows:

e Portable: the system should be easy to port to differentvirae platforms

e Fast: optimisations should be made where possible, hovesgembly code should
be limited as it hampers our first requirement.

e Efficient: use as little system resources as possible, yet dveruse assembly
language as this hinders portability.

Besides these, the following functionality should be innpdmted:

¢ Signing and verification for authentication purposes

e Encryption and decryption of data

5 Requirementsand Design

Due to the computational overhead of ECC, and for public kgptography in general,
it is not really feasible to encrypt whole messages this whstead, a combination
of symmetric and asymmetric methods are employed. In essethe public key
cryptography system based on elliptic curve cryptographused to encrypt a symmetric
key. AES is used on the symmetric side to encrypt and dedmgpattual data.

Thus, the recipient of the data first generates a publi@feiley-pair. The public kel
is generated by such thRt= dQ where the multiplied is the hashed secret password, in
essence, the private ked.is the fixed point on the curve, common to all communicating
entities. The sender of the message suggests a common kegitetso thatk = kQ
wherek is a random multiplierk can then be communicated to the receiver in the form
of messag®! = kP, where the receiver can recover the symmetrickaysing its private
keyd:

e=d modp

Me= (kP)e= (kdQ)e= (kQ)de=K

To implement the system, the three modules (symmetric, asstnt and hash function)
were chosen as follows:

16



e The asymmetric module, based on an elliptic curve ¢2&t)

e The symmetric key module, based on AES (Rijndael) with a i82dey in counter
mode

e 192 bit TIGER[3] hash function

In other words, the cryptographic system provides a 19&yitranetric key length for
the public key operation coupled with a 192 bit symmetric &agryption.

51 Asymmetric Module

To get ECC working, we need to identify an elliptic curve able for cryptographic
purposes.

The equation of the elliptic curve used is defined as follows:
Y A4xy=x+x°+(s?+50+ L+ +1)

The primitive polynomial is:
S91, Py

The order of the fixed point on the curve is a number of 190 Ipfswhich satisfies
the MOV[4] (from Menezes, Okamoto and Vanstone) conditiotild 00 iterations (the
minimum is 9). This means the MOV algorithm for attackingglt curve cryptosystems
which is completed in sub-exponential time for super-siagelliptic curves does not

apply.
The curve was found using Schoof’s algorithm[5], with an lempentation provided in

the Multiprecision Integer and Rational Arithmetic C/C+ibtary (MIRACL) by Shamus
Software [6].

The points of the curve are pairs of polynomi@tsy) but for storage, only the polynomial
x is stored, and one bit that decides which of the two soluttoriee quadratic equation
for y one needs to pick.

5.1.1 Digital Signatures

The DSA algorithm of elliptic curves (Elliptic Curve Digit&ignature Algorithm) is used
to generate the signatures. The algorithm generates a fpaimabers,(r,s) from the

17



private key of the used, and the hash of the message being signed, as followsrfor
r = [kQ|xmodp

Wherek is a random multiplier. That is, is the result of converting the polynomiato
a number of the product of the elliptic curik®. On the other hand fas:

s=k(h+dr)"*modp

The message and the péirs) are sent to the addressee, which verifies the signature by
calculating the hash of the messafeand taking the public key of the sendBr, Then
the following calculation is performed:

r' = [(hs)Q+ (rs)PJxmodp

If r = r then the signature is accepted as a valid. This is easilfiatee by replacind®
andsinr’.

5.2 Symmetric Module

Although the names AES and Rijndael are often used to inglitet same system, there
is a significant difference. Rijndael supports a larger eaofyblock and key sizes; AES
has a fixed block size of 128 bits and a key size of 128, 192, 6ra#s, where instead
Rijndael can be specified with key and block sizes in any plgltof 32 bits, with a
minimum of 128 bits and a maximum of 256 bits. Since a byte ratiyrequals 8 bits,
the fixed block size of 128 bits is normally 16 bytes. AES opes@n a 44 array of bytes,
termed the state (versions of Rijndael with a larger blozk siave additional columns in
the state). Most AES calculations are done in a special fiieitee. The cipher is specified
in terms of repetitions of processing steps that are appliedake up rounds of keyed
transformations between the input plain-text and the fingbat of cipher-text. A set of
reverse rounds are applied to transform cipher-text backihe original plain-text using
the same encryption key.

AES in counter mode (AES-CTR) offers a number of features otieer block cipher
modes and stream ciphers, among others, it provides a safviifgto 32 bytes per record
compared to Cipher Block Chaining (AES-CBC) used in Tramsipayer Security (TLS).
16 bytes are saved from not having to transmit an expliditaigation vector (1V), and
another 1 to 16 bytes are saved from the absence of the paalditig

18



5.3 Hash Module

The emphasis when researching an appropriate hash funeignplaced on speed.
TIGER is one of the fastest hash functions suitable for aggphic purposes, at least in
software implementations. The size of the hash value is 182 Bhis makes a perfect
match for the 190 bit asymmetric module and a 192 bit AES imletation. While
TIGER was originally developed for 64-bit platforms, it che easily adapted to 32-bit
platforms. However, due to the size of TIGER’s S-boxes (d%el3, each with 256 64-bit
entries totals 8 KB) means that implementation in hardwarealler micro-controllers
is not evident.

6 Algorithms

The most important factor to consider to make ECC feasiblectatively low-powered
devices is the choice of algorithms in order to provide ofsted arithmetic. This section
will briefly introduce some of the key algorithms used in thlementation.

6.1 Karatsuba Multiplication

Multiplication of two elements in the polynomial basis is ary intensive operation.
Using the straightforward method to multiply two elementsGF (p™) requires up to
n? multiplications inGF (p) and up ton?m additions inGF (p). Applying a method
developed by Karatsuba and Ofman[7], the amount of mut@gilbns can be reduced in
exchange for an amount of additions. This trade-off will berenefficient for as long
as the the time ratio for multiplication is higher than agiit The overhead in breaking
down and recombining the parts involved in Karatsuba males# suited for hardware
implementations, but it is often used in software.

Let A(x) andB(x) be two polynomials of degree one.

A(X) = agx+ag
B(X) = bix+bo

19



The traditional method for multiplying(x) andB(x) would require the following steps:

Do = aobo
D1 =aoh
D, = ajbg
D3 =aib;

After which the produc€(x) = A(x).B(x) is calculated:

C(X) = D3x? + (D24 D1)x+ Do

Following the Karatsuba method, we can start by taking the pslynomials and
calculating the following products:

Eo = apbo
Ei=ab;

E2 = (ap+a1)(bo+by)
The resuliC(x) = A(X).B(x) is then calculated as follows:

C(x) = E1x® 4 (E2 — Ey — Eg)x+ Eg

The end result is that in the traditional method requireg foultiplications and one
addition, however, the Karatsuba method requires thregphcations and four additions.
We thus exchanged one multiplication for three additions. GF (2™), addition is
especially easy, since addition and subtraction moduleezree same thing and can be
done using a basic XOR operation.

6.2 Itoh-Tsujii Inversion

Inversion operations in the field are costly operation. Whbiliginally developed for use
in normal basis representation ov@F (2M), the Itoh-Tsuijii Inversion[8], is generic and
can be applied for other bases such as the polynomial basis.g&neral form of the
algorithm is as follows:
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The algorithm presented in Algorithm 1 below illustrates tieneral workings of this
algorithm.

Algorithm 1: Itoh-Tsuijii Inversion

Input: Ae GF(p™)
Output: A~1

r—(e"-1)/(p—-1)
computeA’ 1 in GF (p™)
computeA’ = A'~1A
compute(A") 1 in GF (p)
computeA—1 = (A")~1A-1
returnA—1

o O A~ W N P

This algorithm is fast because steps 3 and 5 both involveatipes in the sub-field
GF(p). Similarly, if a small value op is used, a look-up table can be used for inversion
in step 4. The majority of time spent in this algorithm is iasR, the first exponentiation.
This is one reason why this algorithm is well-suited for tleemal basis, since squaring
and exponentiation are relatively easy in that basis. Heweincer is known ahead of
time, an efficient addition chain for the exponentiationtigps2 can be precomputed and
hard-coded into the algorithm.

6.3 deRooij Point Multiplication

As pointed out before, the most occurring operation in EC@ast multiplication;

Q = kP. For large values ok, computingkP is an expensive task. Some methods
used for ordinary integer exponentiation can be adaptedpoave these operations. The
(binary)-double-and-add algorithm [9] is perhaps the mast-known algorithms in this
regard. It is also known as the square-and-multiply algoribr binary exponentiation
outside of the application in additive groups. It has a caxity of log,(k) + WH (k)
group operations, whek&H is the Hamming weight of the multiplide. On average, we
can expect this algorithm to requireblog, (k) group operations. Using more advanced
methods, such as signed digit, k-ary or sliding window, th@plexity may be reduced to
approximately 12log, (k) group operations on average [10]. However, it can get hetter
if the point is known in advance. One of the important appices of ECC is providing
digital signatures. The Elliptic Curve Digital Signaturégarithm (ECDSA) [11] works
by multiplying a fixed curve point by the user-generatedata\key as its main operation.
Because the curve point is known ahead of time, pre-compuogamay be performed
to speed up the signing process. Using a method devised byaig[R2], we are able
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to reduce the number of group operations necessary by a faictour over the binary-
double-and-add algorithm. The method, known as fixed poudtiplication using pre-
computation and vector addition chains, is implementedaws in Algorithm 2.

Algorithm 2. de Rooij Fixed Point Multiplication using Pre-Computatio
and Vector Addition Chains

t .
Require: {b°A blA, ..., b'A}, Ac E(GF (p™)), and s= Z)sb'

Ensure: C = sA,C € E(GF (p™)

1 DefineM € [0,t] such thatzy >z forall 0 <i <t

2 DefineN € [0,t],N # M such thaizy >z forall 0<i<t,i=M

3 fori«<Ototdo

4 | A —DbA

5 4S

6 end

7 DetermineM andN for {zy,z,...,z}

s whilezy > 0do

o | g« [Zm/ZN]

10 An — 0AM + AN (Here we apply binary-double-and-add)

1 Zv — Zy modzy

12 DetermineM andN for {z,71,...,z}
13 end

14 C «— z2pmAMm
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Part IV

Conclusions and Future Wor k

7 Results

The cryptographic system was implemented on a couple adreéifit platforms to provide
a clear picture of the performance one can expect on diffexeribedded systems. All
systems are running Linux, with either GNU Libc or uClibc.€lfarget platforms consists

of:

Table 3 gives an overview of the time each CPU needs to cadctileld operations.
The most used operations here include point multiplicaguoiaring, solving a quadratic

Freescale MPC5200B clocked at 400MHz (GNU Libc)

Renesas SH7203 clocked at 200MHz (uClibc)

equation to find the correct y coordinate of a point and ineers

Nokia N800, TI OMAP 2420 clocked at 330MHz (GNU Libc)

Freescale ColdFire MCF54455 clocked at 266MHz (GNU Libc)

Freescale ColdFire MCF52277 clocked at 160MHz (uClibc)

multiplication | squaring| quad-solving| inversion

MPC5200B 0.0014s | 0.0000s| 0.0500s | 0.0500s
Nokia N800O| 0.0043s | 0.0000s| 0.1100s | 0.0300s
SH7203 0.0057s | 0.0100s| 0.2700s | 0.1300s
MCF54455 0.0214s | 0.0050s| 0.4800s | 0.3500s
MCF52277 0.0486s | 0.0250s| 1.1200s | 0.7800s

ECC scalar multiplicatiorQ = kP time needed is shown in Table 4. This is the main

Table 3: Field Operations

factor limiting speed in the rest of the cryptographic sgste

The time needed to perform a set of cryptographic operatiookiding key generation,

encryption/decryption and signature generation/vetibcas given in Table 5.
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scalar multiplication
Nokia N800 0.035s
MPC5200B 0.037s
SH7203 0.088 s
MCF54455 0.297 s
MCF52277 0.737 s

Table 4: Scalar Multiplication

Encrypt-Decrypt| Sign/Verify | Key generation
Nokia N800| 0.122 s/cycle | 0.087 s/cycle 0.036 s/key
MPC5200B| 0.130s/cycle | 0.100 s/cyclg 0.030 s/key
SH7203 0.303 s/cycle | 0.223 s/cycle 0.086 s/key
MCF54455| 1.021 s/cycle | 0.763 s/cycle 0.300 s/key
MCF52277| 2.559 s/cycle | 1.928 s/cycle 0.761 s/key

It should be noted that the seemingly slow execution on GoddE most likely due to
missing optimisations in the GCC compiler suite for thisckof CPU. Other compilers
with specific optimisations for ColdFire (such as CodeVdajricould result in better

Table 5: Cryptographic Operations

performance, but was not tested due to lack of time.

8 FutureWork

The focus of future work will be on the development of an efinti Public Key

Infrastructure (PKI) with implementations for sensor netks and other applications
where large quantities of communicating nodes are presbtanagement of a large
number of keys especially while certifying every key is a onabstacle that needs to

be tackled before easy and large scale deployment becoaslée
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