Conference and Workshop on Ambient Intelligence and Embedded Systems

Portable Elliptic Curve Cryptography For Medium-Sized Embedded Systems

Johan Dams (jd@puv.fi)

Overview

"The protection provided by encryption is based on the fact that most people would rather eat liver than do mathematics," Bill Neugent

- Elliptic Curve Cryptography (ECC)
 - Math
- Implementing ECC
 - Signatures
 - Encryption
- Practical Implementation and Algorithms
 - Cryptographic Hash (TIGER)
 - Advanced Encryption Standard (AES)
 - Elliptic Curve Crypto Module

ECC - Why?

• Compare ECC to RSA keylength

RSA (1024 bit):

B52264FB7B9154350F1BE765F2979A13091E539B40167BC8FE58F5AB5C4DF3C8B0CC 06A68BF6BBBA30D777345A48F81AC60F2397EDE31E6BCCDF78A584D0E913EC10F07C A55D368B44ADBB3B82E3606310083DF41318872196852E5B20FA1C6AB1B44C943E21

```
ECC (192 bit):
```

FFDF1C7C598311CC1287836B540FB29AF8A35393797D11C8

 These two offer the same level of security

...Size Does Matter!

ECC key size	RSA key size	Key size ratio
(bits)	(bits)	
163	1024	1/6
256	3072	1/12
384	7680	1/20
512	15360	1/30

Table 1: ECC and RSA Equivalent Key Sizes

Bits of Security	Symmetric Algorithm	RSA	ECC
80	2TDEA	k = 1024	f = 160 - 223
112	3TDEA	k = 2048	f = 224 - 255
128	AES-128	k = 3072	f = 256 - 383
192	AES-192	k = 7680	f = 384 - 511
256	AES-256	k = 15360	f = 512 +

Table 2: Equivalent Key Sizes for Symmetric and Asymmetric Cryptography

Elliptic Curve Discrete Logarithm Problem

- Iet P and Q be two points on an elliptic curve such that
 kP = Q
- k is a scalar
- Given P and Q, it is computationally infeasible to obtain k, if k is sufficiently large
- k is the discrete logarithm of Q to P

- Main operation involved in ECC: point multiplication
- Specially designated point G (base point)
 - large fraction of the elliptic curve points are multiples of it
- To generate a key pair:
 - random integer k which serves as the private key
 - computes kG which serves as the corresponding public key

Point Addition

Point Doubling

Finite Fields

- Operations in the previous section were on real numbers
 - Slow and inaccurate due to rounding
 - Cryptographic operations: fast and accurate

Prime field GF(p)

```
Binary field GF(2^m)
```

Finite Fields

Finite Fields

• Which Field?

- Curves over prime field are more efficient to implement in software
- We can optimise systems using the binary field too
- Chosen option: binary field
 - Lack of implementations available
 - Always up for a challenge :-)

Practical Implementation

• Requirements:

- Portable
- Fast
- Efficient
- Needs to provide:
 - Signatures and Verification
 - Encryption and Decryption of data

Practical Implementation

- Mathematics in ECC high overhead
 Goes for public key crypto in general
- Do not use ECC to encrypt the message...
 - Use a combination of symmetric and asymmetric crypto
 - Use ECC to encrypt a symmetric key
 - Use symmetric crypto (in our case AES) to encrypt and decrypt the data – much faster!

Practical Implementation

- Recipient of data generates public/private key pair
- Public key P is generated such that P=dQ, d being the hashed secret (in essence the private key)
- The sender of the message suggests a common secret key K so that K=kQ, k is a random multiplier
- k can then be communicated to the receiver in the form of message M=kP
- the receiver can recover the symmetric key K using its private key $d = d^{-1}modp$

$$Me = (kP)e = (kdQ)e = (kQ)de = K$$

Choices

- The asymmetric module, based on an elliptic curve over (2^191)
- The symmetric key module, based on AES (Rijndael) with a 192 bits key
- 192 bit TIGER hash function
- For signature generation, the Elliptic Curve Digital Signature Algorithm is implemented

Algorithms to Speed Things Up

• Karatsuba Multiplication

- Itoh-Tsujii Inversion
- de Rooij Point Multiplication

Karatsuba Multiplication

- The traditional method for multiplying A(x) and B(x) would require the following steps
 - D0 = a0b0
 - D1 = a0b1
 - D2 = a1b0
 - D3 = a1b1
- C(x) = A(x).B(x) is calculated:
 C(x) = D3x^2+(D2+D1)x+D0

Karatsuba Multiplication

• calculate the following products:

- E0 = a0b0
- E1 = a1b1
- E2 = (a0+a1)(b0+b1)
- C(x) = A(x).B(x) is then calculated as follows:
 - $C(x) = E1x^2+(E2-E1-E0)x+E0$

Karatsuba Multiplication

- The traditional method requires four multiplications and one addition
- Karatsuba method requires three multiplications and four additions
- We thus exchanged one multiplication for three additions.
 - In GF(2^m), addition is especially easy, since addition and subtraction modulo 2 are the same thing and can be done using a basic XOR operation.

Itoh-Tsujii Inversion

$$A^{-1} = (A^r)^{-1}A^{r-1}$$
 where $r = \frac{p^{m-1}}{p-1}$

Algorithm 1: Itoh-Tsujii Inversion

Input: $A \in GF(p^m)$ Output: A^{-1} $r \leftarrow (p^m - 1)/(p - 1)$ $compute A^{r-1} in GF(p^m)$ $compute A^r = A^{r-1}A$ $compute (A^r)^{-1} in GF(p)$ $compute A^{-1} = (A^r)^{-1}A^{r-1}$ $compute A^{-1}$

Itoh-Tsujii Inversion

- This algorithm is fast because steps 3 and 5 both involve operations in the sub-field GF(p)
- Similarly, if a small value of p is used, a look-up table can be used for inversion in step 4
- The majority of time spent in this algorithm is in step 2, the first exponentiation.
 - However, since r is known ahead of time, an efficient addition chain for the exponentiation in step 2 can be precomputed and hard-coded into the algorithm.

de Rooij Point Multiplication

- Remember point multiplication
 Most occuring operation in ECC
- Some methods used for ordinary integer exponentiation can be adapted to improve these operations.
 - The (binary)-double-and-add algorithm is perhaps the most well-known algorithms in this regard.
- Using de Rooij, we are able to reduce the number of group operations necessary by a factor of four over the binary double-and-add algorithm.

de Rooij Point Multiplication

Algorithm 2: de Rooij Fixed Point Multiplication using Pre-Computation and Vector Addition Chains

Require: $\{b^0A, b^1A, ..., b^tA\}, A \in E(GF(p^m)), and s = \sum_{i=1}^{n} s_i b^i$ **Ensure**: $C = sA, C \in E(GF(p^m))$ 1 Define $M \in [0, t]$ such that $z_M \ge z_i$ for all $0 \le i \le t$ ² Define $N \in [0, t], N \neq M$ such that $z_N \geq z_i$ for all $0 \leq i \leq t, i = M$ **3** for $i \leftarrow 0$ to t do 4 $A_i \leftarrow b^i A$ 5 $Z_i S_i$ 6 end 7 Determine M and N for $\{z_0, z_1, ..., z_t\}$ s while $z_N \ge 0$ do 9 | $q \leftarrow |Z_M/Z_N|$ 10 $A_N \leftarrow qA_M + A_N$ (Here we apply binary-double-and-add) 11 $z_M \leftarrow z_M \mod z_N$ Determine M and N for $\{z_0, z_1, ..., z_t\}$ 12 13 end 14 $C \leftarrow z_M A_M$

Results

- Nokia N800, TI OMAP 2420 clocked at 330MHz (GNU Libc)
- Freescale MPC5200B clocked at 400MHz (GNU Libc)
- Renesas SH7203 clocked at 200MHz (uClibc)
- Freescale ColdFire MCF54455 clocked at 266MHz (GNU Libc)
- Freescale ColdFire MCF52277 clocked at 160MHz (uClibc)

	multiplication	squaring	quad-solving	inversion
MPC5200B	0.0014 s	0.0000 s	0.0500 s	0.0500 s
Nokia N800	0.0043 s	0.0000 s	0.1100 s	0.0300 s
SH7203	0.0057 s	0.0100 s	0.2700 s	0.1300 s
MCF54455	0.0214 s	0.0050 s	0.4800 s	0.3500 s
MCF52277	0.0486 s	0.0250 s	1.1200 s	0.7800 s

Table 3: Field Operations

	scalar multiplication
Nokia N800	0.035 s
MPC5200B	0.037 s
SH7203	0.088 s
MCF54455	0.297 s
MCF52277	0.737 s

Table 4: Scalar Multiplication

	Encrypt-Decrypt	Sign/Verify	Key generation
Nokia N800	0.122 s/cycle	0.087 s/cycle	0.036 s/key
MPC5200B	0.130 s/cycle	0.100 s/cycle	0.030 s/key
SH7203	0.303 s/cycle	0.223 s/cycle	0.086 s/key
MCF54455	1.021 s/cycle	0.763 s/cycle	0.300 s/key
MCF52277	2.559 s/cycle	1.928 s/cycle	0.761 s/key

Table 5: Cryptographic Operations

- The focus of future work will be on the development of an efficient Public Key Infrastructure (PKI) with implementations for sensor networks and other applications
- Management of a large number of keys especially while certifying every key is a major obstacle that needs to be tackled before easy and large scale deployment becomes feasible.

 Demo is running on a Renesas SH7203

 Decrypts images and display on screen

• Encrypt a data file

• Thank You for Your Attention!