
Portable Elliptic Curve
Cryptography

For Medium-Sized Embedded
Systems

Conference and Workshop on
 Ambient Intelligence and

Embedded Systems

Johan Dams (jd@puv.fi)

Overview

 Elliptic Curve Cryptography (ECC)
 Math

 Implementing ECC
 Signatures
 Encryption

 Practical Implementation and Algorithms
 Cryptographic Hash (TIGER)
 Advanced Encryption Standard (AES)
 Elliptic Curve Crypto Module

"The protection provided by encryption is based on the fact that
most people would rather eat liver than do mathematics,"

Bill Neugent

ECC - Why?

 Compare ECC to RSA keylength

 These two offer the same level of
security

...Size Does Matter!

The Elliptic Curve

Weierstrass Form:

Elliptic Curve Discrete
Logarithm Problem

 let P and Q be two points on an
elliptic curve such that
 kP = Q

 k is a scalar
 Given P and Q, it is computationally

infeasible to obtain k, if k is
sufficiently large

 k is the discrete logarithm of Q to P

kP = Q

 Main operation involved in ECC:
point multiplication

 Specially designated point G (base
point)
 large fraction of the elliptic curve points

are multiples of it
 To generate a key pair:

 random integer k which serves as the
private key

 computes kG which serves as the
corresponding public key

Point Addition

Point Doubling

Finite Fields

 Operations in the previous section
were on real numbers
 Slow and inaccurate due to rounding
 Cryptographic operations: fast and

accurate

Finite Fields

Finite Fields

 Which Field?
 Curves over prime field are more

efficient to implement in software
 We can optimise systems using the

binary field too
 Chosen option: binary field

 Lack of implementations available
 Always up for a challenge :-)

Practical Implementation

 Requirements:
 Portable
 Fast
 Efficient

 Needs to provide:
 Signatures and Verification
 Encryption and Decryption of data

Practical Implementation

 Mathematics in ECC high overhead
 Goes for public key crypto in general

 Do not use ECC to encrypt the
message...
 Use a combination of symmetric and

asymmetric crypto
 Use ECC to encrypt a symmetric key
 Use symmetric crypto (in our case AES)

to encrypt and decrypt the data – much
faster!

Practical Implementation

 Recipient of data generates public/private key pair
 Public key P is generated such that P=dQ, d being

the hashed secret (in essence the private key)
 The sender of the message suggests a common

secret key K so that K=kQ, k is a random
multiplier

 k can then be communicated to the receiver in the
form of message M=kP

 the receiver can recover the symmetric key K
using its private key d

Choices

 The asymmetric module, based on
an elliptic curve over (2^191)

 The symmetric key module, based
on AES (Rijndael) with a 192 bits key

 192 bit TIGER hash function

 For signature generation, the Elliptic
Curve Digital Signature Algorithm is
implemented

Algorithms to Speed Things Up

 Karatsuba Multiplication

 Itoh-Tsujii Inversion

 de Rooij Point Multiplication

Karatsuba Multiplication

 The traditional method for
multiplying A(x) and B(x) would
require the following steps
 D0 = a0b0
 D1 = a0b1
 D2 = a1b0
 D3 = a1b1

 C(x) = A(x).B(x) is calculated:
 C(x) = D3x^2+(D2+D1)x+D0

Karatsuba Multiplication

 calculate the following products:
 E0 = a0b0
 E1 = a1b1
 E2 = (a0+a1)(b0+b1)

 C(x) = A(x).B(x) is then calculated
as follows:
 C(x) = E1x^2+(E2−E1−E0)x+E0

Karatsuba Multiplication

 The traditional method requires four
multiplications and one addition

 Karatsuba method requires three
multiplications and four additions

 We thus exchanged one multiplication
for three additions.
 In GF(2^m), addition is especially easy,

since addition and subtraction modulo 2
are the same thing and can be done using
a basic XOR operation.

Itoh-Tsujii Inversion

Itoh-Tsujii Inversion

 This algorithm is fast because steps 3 and 5
both involve operations in the sub-field GF(p)

 Similarly, if a small value of p is used, a look-up
table can be used for inversion in step 4

 The majority of time spent in this algorithm is
in step 2, the first exponentiation.
 However, since r is known ahead of time, an

efficient addition chain for the exponentiation in
step 2 can be precomputed and hard-coded into
the algorithm.

de Rooij Point Multiplication

 Remember point multiplication
 Most occuring operation in ECC

 Some methods used for ordinary integer
exponentiation can be adapted to
improve these operations.
 The (binary)-double-and-add algorithm is

perhaps the most well-known algorithms in
this regard.

 Using de Rooij, we are able to reduce
the number of group operations
necessary by a factor of four over the
binary double-and-add algorithm.

de Rooij Point Multiplication

Conclusion and Future Work

 Results
 Nokia N800, TI OMAP 2420 clocked at

330MHz (GNU Libc)
 Freescale MPC5200B clocked at 400MHz

(GNU Libc)
 Renesas SH7203 clocked at 200MHz

(uClibc)
 Freescale ColdFire MCF54455 clocked at

266MHz (GNU Libc)
 Freescale ColdFire MCF52277 clocked at

160MHz (uClibc)

Conclusion and Future Work

Conclusion and Future Work

Conclusion and Future Work

 The focus of future work will be on the
development of an efficient Public Key
Infrastructure (PKI) with implementations
for sensor networks and other applications

 Management of a large number of keys
especially while certifying every key is a
major obstacle that needs to be tackled
before easy and large scale deployment
becomes feasible.

Demo

 Demo is running on a Renesas
SH7203

 Decrypts images and display on
screen

 Encrypt a data file

Questions?

 Thank You for Your Attention!

	Telecommunication Software
	Description
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

