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Overview

 Elliptic Curve Cryptography (ECC)
 Math

 Implementing ECC
 Signatures
 Encryption

 Practical Implementation and Algorithms
 Cryptographic Hash (TIGER)
 Advanced Encryption Standard (AES)
 Elliptic Curve Crypto Module

"The protection provided by encryption is based on the fact that 
most people would rather eat liver than do mathematics," 

Bill Neugent



ECC - Why?

 Compare ECC to RSA keylength

 These two offer the same level of 
security 



...Size Does Matter!



The Elliptic Curve

Weierstrass Form:



Elliptic Curve Discrete
Logarithm Problem

 let P and Q be two points on an 
elliptic curve such that 
 kP = Q

 k is a scalar
 Given P and Q, it is computationally 

infeasible to obtain k, if k is 
sufficiently large

 k is the discrete logarithm of Q to P



kP = Q

 Main operation involved in ECC: 
point multiplication

 Specially designated point G (base 
point)
 large fraction of the elliptic curve points 

are multiples of it
 To generate a key pair:

 random integer k which serves as the 
private key

 computes kG which serves as the 
corresponding public key



Point Addition



Point Doubling



Finite Fields

 Operations in the previous section 
were on real numbers
 Slow and inaccurate due to rounding
 Cryptographic operations: fast and 

accurate



Finite Fields



Finite Fields

 Which Field?
 Curves over prime field are more 

efficient to implement in software
 We can optimise systems using the 

binary field too
 Chosen option: binary field

 Lack of implementations available
 Always up for a challenge :-)



Practical Implementation

 Requirements:
 Portable
 Fast
 Efficient

 Needs to provide:
 Signatures and Verification
 Encryption and Decryption of data



Practical Implementation

 Mathematics in ECC high overhead
 Goes for public key crypto in general

 Do not use ECC to encrypt the 
message...
 Use a combination of symmetric and 

asymmetric crypto
 Use ECC to encrypt a symmetric key
 Use symmetric crypto (in our case AES) 

to encrypt and decrypt the data – much 
faster!



Practical Implementation

 Recipient of data generates public/private key pair
 Public key P is generated such that P=dQ, d being 

the hashed secret (in essence the private key)
 The sender of the message suggests a common 

secret key K so that K=kQ, k is a random 
multiplier

 k can then be communicated to the receiver in the 
form of message M=kP

 the receiver can recover the symmetric key K 
using its private key d



Choices

 The asymmetric module, based on 
an elliptic curve over (2^191)

 The symmetric key module, based 
on AES (Rijndael) with a 192 bits key

 192 bit TIGER hash function

 For signature generation, the Elliptic 
Curve Digital Signature Algorithm is 
implemented



Algorithms to Speed Things Up

 Karatsuba Multiplication

 Itoh-Tsujii Inversion

 de Rooij Point Multiplication



Karatsuba Multiplication

 The traditional method for 
multiplying A(x) and B(x) would 
require the following steps
 D0 = a0b0
 D1 = a0b1
 D2 = a1b0
 D3 = a1b1

 C(x) = A(x).B(x) is calculated:
 C(x) = D3x^2+(D2+D1)x+D0



Karatsuba Multiplication

 calculate the following products:
 E0 = a0b0
 E1 = a1b1
 E2 = (a0+a1)(b0+b1)

 C(x) = A(x).B(x) is then calculated 
as follows:
 C(x) = E1x^2+(E2−E1−E0)x+E0



Karatsuba Multiplication

 The traditional method requires four 
multiplications and one addition 

 Karatsuba method requires three 
multiplications and four additions

 We thus exchanged one multiplication 
for three additions. 
 In GF(2^m), addition is especially easy, 

since addition and subtraction modulo 2 
are the same thing and can be done using 
a basic XOR operation.



Itoh-Tsujii Inversion



Itoh-Tsujii Inversion

 This algorithm is fast because steps 3 and 5 
both involve operations in the sub-field GF(p)

 Similarly, if a small value of p is used, a look-up 
table can be used for inversion in step 4

 The majority of time spent in this algorithm is 
in step 2, the first exponentiation.
 However, since r is known ahead of time, an 

efficient addition chain for the exponentiation in 
step 2 can be precomputed and hard-coded into 
the algorithm.



de Rooij Point Multiplication

 Remember point multiplication
 Most occuring operation in ECC

 Some methods used for ordinary integer 
exponentiation can be adapted to 
improve these operations.
 The (binary)-double-and-add algorithm is 

perhaps the most well-known algorithms in 
this regard.

 Using de Rooij, we are able to reduce 
the number of group operations 
necessary by a factor of four over the 
binary double-and-add algorithm. 



de Rooij Point Multiplication



Conclusion and Future Work

 Results
 Nokia N800, TI OMAP 2420 clocked at 

330MHz (GNU Libc)
 Freescale MPC5200B clocked at 400MHz 

(GNU Libc)
 Renesas SH7203 clocked at 200MHz 

(uClibc)
 Freescale ColdFire MCF54455 clocked at 

266MHz (GNU Libc)
 Freescale ColdFire MCF52277 clocked at 

160MHz (uClibc)



Conclusion and Future Work



Conclusion and Future Work



Conclusion and Future Work

 The focus of future work will be on the 
development of an efficient Public Key 
Infrastructure (PKI) with implementations 
for sensor networks and other applications

 Management of a large number of keys 
especially while certifying every key is a 
major obstacle that needs to be tackled 
before easy and large scale deployment 
becomes feasible.



Demo

 Demo is running on a Renesas 
SH7203

 Decrypts images and display on 
screen

 Encrypt a data file



Questions?

 Thank You for Your Attention!
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