
A Lightweight Web Service Approach for Querying Sensor
Networks using the example of ZigBee

Helmut Dispert Johannes Bönniger Alkje Kalies
Jonas Kaufmann Jan Küting Sebastian Lampe

Michael Lodemann Justus Rogowski Benjamin Widmann

Kiel University of Applied Sciences, Germany
Faculty of Computer Science and Electrical Engineering

{johannes.boenniger, alkje.kalies, jonas.kaufmann, jan.kueting}@student.fh-kiel.de
{sebastian.lampe, michael.lodemann, justus.rogowski, benjamin.widmann}@student.fh-kiel.de

helmut.dispert@fh-kiel.de

ABSTRACT
We present the design and implementation of a unified ac-
cess platform to sensor networks based upon Web Services.
This allows other systems in heterogeneous environments to
easily consume and process sensor network data transmitted
by sensor nodes. Clients can subscribe to different node or
value types while data filtering is performed on the server
side. The system design is modular and all components are
exchangeable. The prototype version uses ZigBee as an ex-
ample wireless communication technology. To demonstrate
the capabilities of the system, four different clients were de-
veloped that demonstrate different access strategies in ho-
mogeneous and heterogeneous environments.

Categories and Subject Descriptors
C.2.0 [Computer Systems Organization]: Computer Com-
munication Networks.

General Terms
Design, Experimentation, Languages, Standardization

Keywords
ZigBee, Wireless Sensor Networks, Web Services

1. INTRODUCTION
When designing Sensor Network Systems, there are often
proprietary methods for querying sensor nodes. On the
other hand, a simple integration of sensor networks in het-
erogeneous systems might be useful for various applications.
A commonly used way of sharing data is Web Services,
which provides method invocation and data exchange across
different platforms. To get these two aspects together, it
would be convenient to be able to query sensor networks
through Web Services. In contrast to existing solutions
like TinyDB [1], the approach is not limited to a specific
platform. Such a system would also efficiently decouple data
acquisition from data processing through business rules and
data presentation. Further, multiple applications would be
able to consume data from the same sensor network.

We present a prototype that uses a lightweight protocol for
querying ZigBee networks. However, the design is modular

to support seamless integration of multiple sensor networks.
The implementation strategy behind querying methods -
based on Web Services - is very lightweight. We imple-
mented basic access methods that are absolutely necessary
for querying the network. All other methods are considered
application-specific and therefore should be implemented by
the business tier.

Similar work is done by Woo [2]. There the main attention
is on creating an embedded component that provides a rich
API based on Web Services. We chose to use common PC
infrastructure together with an USB dongle to sniff network
information. This greatly improves extensibility and makes
the use of other Sensor Network types much easier using less
development time.

2. SYSTEM ARCHITECTURE
The system architecture represents the concept and idea of
reading wireless sensor-network data, filtering and dispatch-
ing it to multiple client applications for further use. The
following explains the different layers of the system, how
data-flow is handled and storage is realized. This section
describes the system architecture from a conceptual and
therefore a technology-independent point of view.

Figure 1: System architecture (conceptual view)

1



2.1 Raw Data Analysis
The lowermost level of the technological environment is rep-
resented by the sensor network. Sensor network nodes are
able to send many kinds of frames including command-frames,
beacons, ACK or data-frames of different size.

Regarding the system’s Raw Data Analysis layer, network
packets are intercepted during continuous observation of the
sensor network by using an adequate hardware interface.
Having promiscuous mode functions, the hardware interface
must not necessarily be an active node of the sensor network.
Therefore, in its range, it has the ability to sniff network
packets. This way it is even possible to run different analysis
components for different technologies at the same time.

After intercepting a packet from the network, it is classified
in order to filter only required packets. Packets are in a dif-
ferent format depending on transmission technique, protocol
and sensor type. So an analysis component is introduced
which is able to extract all relevant information out of the
packet’s header and body. This information is transformed
into a technology-independent representation format which
contains predefined meta-data for example a sensor name or
sensor profile corresponding to the systems Data Model (see
chapter 2.4).

The system is designed to be modular containing highly
exchangeable components. The Raw Data Analysis layer
follows this directive in order to provide flexibility. The
system is able to host different components - even at the
same time - to provide network connectivity for example to
Bluetooth or other wireless technologies.

2.2 Dispatching and Delivery
To support multiple endpoints such as session storage, mes-
sage queues, databases or logging systems, the Dispatching
and Delivery layer offers an abstract definition of a deliv-
ery strategy. Following a strategy, sensor data packets are
routed to the designated endpoint specified in the concrete
implementation.

The implementation follows a technology-independent ap-
proach which enables the system to dispatch data to multiple
targets by following a concrete delivery strategy per target
endpoint. A plug-in model might provide the opportunity to
add or remove other implementations of delivery strategies
in further versions (see chapter 5).

2.3 Packet Filtering
Packet filtering allows clients to specify which data they
are interested in by using a simple query language. Query
statements are then used by the service to filter and trans-
form sensor data packets. A more sophisticated way to
implement such behavior might be to reconfigure the sensor
network in a way that would 1) satisfy all client needs and
2) optimize the overall power consumption by eliminating
duplicate packet transmission (see chapter 5). The current
system just receives anything transmitted by the sensor net-
work. Therefore, serving client requests is performed by
filtering incoming packets based upon query compilation and
execution as described in section 3.3. The following section
is intended to give the reader a definition of the proposed
query language.

Definition
A query Q is defined as Q = {s1, s2, . . . , sn} where si is one
separated query statement which is defined as si = {k, t, c}
where k defines what kind of sensor type st is requested, t
represents any kind of transformation function (to transform
requested sensor data value v ) and finally c is any condition
that must be satisfied in order to let a sensor data packet
passing the filter.

Each statement of a query Q is applied on each incoming
sensor data value v and its sensor type st in the following
way: The packet is forwarded to the client if st = k for
at least one si in Q and the corresponding condition c(v)
are both true. The condition c might reference the original
value v or its transformed representation t(v). In this case
c(t (v)) must be true. Any sensor data packet that passes
the filter contains the transformed data value t(v). If no
transformation has been defined, t is defined as t (x) = x. If
no condition is defined, c is defined as c (x) = true.

Examples
Listing 1 shows a query example that receives any tempera-
ture value from a device with the identifier 0000. This query
statement defines k as temperature, t as t (x) = x and c
as deviceid = 0000. Because there is no transformation
function defined, the actual temperature value as received
from the sensor network is delivered.

Listing 1: Simple query statement
select temperature

where deviceid = ’0000’;

The second example as shown by Listing 2 is a similar query
statement, but it contains a transformation function. Fur-
thermore the transformed value is declared as temp in order
to reuse the transformed value again inside the condition.
The transformation function can include any construct the
query language supports such as mathematical functions
like ln (x), xy or

√
x. The term temperature can occur

multiple times inside t and c, but mixing different sensor
types inside the same transformation function is not allowed
since a query statement is applied for each single sensor data
packet. We assume that each packet only contains one type
of sensor value (see section 2.4).

Listing 2: Query statement with transformation
select transform_function(temperature)

as temp where temp > 0;

2.4 Data Model
The Data Model layer represents the data model for single
sensor packets used for the system-internal communication
and realizes a session concept to manage multiple client
connections. A single sensor data packet consists of a header
and a body part. The header holds some meta- data about
the source, creation time, type and how to interpret the
attached data in the body. The body contains the sensor
data payload represented as a floating point value.

Devices and sensor profiles of the monitored sensor network
have to be defined in the server context (see chapter 3.4).

2



Figure 2: Structure of an internal data package

Depending on the stored sensor profile, the packet’s content
can be interpreted, according to scale factor and dimension,
e.g. as a photo sensor measurement value of 100 luces from
node 0x1F.

As already mentioned, SniffBee supports multiple listening
clients. By introducing a session model it can be assured
that sensor data is assigned to a particular client. Since
the Session model follows the paradigm of the pull concept,
it is also necessary to have a store to cache data until it
is requested by the client (not applicable for message queue
adapter). All data-request related operations are bound to a
session. Monitoring a sensor network with SniffBee requires
opening a session. As long as a session is valid and active, all
packets matching the filtering rules are cached and delivered.
Closing the session stops this process.

Figure 3: Client/server data exchange

2.5 Gateway
The Gateway layer provides a standardized interface to ac-
cess data from sensor networks. This is important for the
integration of those networks in enterprise environments.
However, the architecture is designed to support different
interfaces.

The difference between those interfaces is the method of data
access. We provide push and pull-based mechanisms. By
using push-based mechanisms like Message Queues, clients
receive new data as soon as it becomes available. In contrast,
pull-based mechanisms like Web Services have to be queried
periodically. In push-based solutions, a client connects to
the data source and receives data as a constant stream.
There is no need to manually care about session data as the
underlying technology like Message Queues handles those
concerns. In contrast, pull-based solutions have to track
session information for all queries. First, a client has to open
a session. Second, a client might request meta-information
about the network or specific devices and their abilities.

Finally, a client requests data that has been cached since
the last request periodically.

3. IMPLEMENTATION
In relation to the system architecture in figure 1, the follow-
ing figure shows the implementation of the presented system.

Figure 4: System implementation

The following section discusses all components in bottom up
order, which is coherent to the direction in which data flows.

3.1 Raw Data Analysis
The PacketReader component in this concrete implementa-
tion communicates with a ZigBee peripheral unit (a USB-
dongle). The component interacts with the dongle’s native
driver in order to configure its behavior. For example, the
USB-dongle can interact as a router or end device. It even
can be used as a ZigBee coordinator in order to manage a
whole ZigBee network.

According to the ZigBee specification [3], the dongle is a
fully configurable ZigBee sensor node which can operate as
a FFD1or RFD2. An important ability of the dongle is to
operate in Promiscuous Mode as well. In this mode, the
device received all network traffic. Therefore all packets are
received without any further differentiation.

For data analysis issues, raw data packets are passed to
the PacketAnalyzer. Packets are classified into one of the
following categories:

• Stack-Command-Packages represent internal com-
mand packets defined by the dongles’ software stack.
They are not transmitted within the sensor-network.

• Command-Packages are used for network-management
issues like adding and removing devices or coordinator
and router alignments.

1Full Function Device
2Reduced Function Device

3



• Beacons are packets that are sent periodically by spe-
cial network nodes like routers or coordinators in order
to announce their presence to other nodes.

• Data-Packets are the relevant packets for this appli-
cation. They contain sensor data.

Actually, this list is incomplete, but missing categories are
not relevant for the application, like ACK-packets for exam-
ple.

After a packet has been identified as a data packet, the Pack-
etAnalyzer extracts the sensor data value out of the packet’s
payload. The ServerContext (see chapter sec:serverContext)
holds a list of SensorProfiles which is used to determine
which kind of sensor data is located at which bit-position of
the payload data. After the information has been extracted,
the concrete sensor data and its sensor profile are repacked
into a technology-independent format (SensorDataPacket).
Finally, this new packet is passed to the upper next software
layer - the PacketDispatcher.

3.2 Dispatching and Delivery
As mentioned before, the Dispatching and Delivery layer
consists of two components to enable the multiple strat-
egy approach: PacketDispatcher and PacketDeliveryStrat-
egy. The PacketDispatcher reads the SensorDataPackets
and distributes the data to the designated targets by call-
ing the corresponding method implemented in the concrete
PacketDeliveryStrategy. It acts as a data sink to the lower-
most system layer which writes packets into a queue. Us-
ing a threaded loop, the dispatcher reads and removes the
stored data and pushes it to the strategy-related targets.
Therefore, the dispatcher holds a list internally containing
the strategies available at run-time - calling each one for
processing.

A PacketDeliveryStrategy implements the provided interface
IPacketDeliveryStrategy. Thereby, the implementing class
controls how to and where to publish the data. At this stage
of development the system makes use of two strategies (see
figure 5). The PacketToSessionStorageDelivery transmits
incoming packages to a SessionStorage instance (which offers
session management and per-session data caching function-
ality). The second one, PacketToMessageQueueDelivery,
delivers the data to a Microsoft Message Queue.

As shown in the class diagram (see figure 5), the layer im-
plements the following interfaces to fulfill the desired func-
tionalities of routing sensor data packets:

• IPacketDispatcher: Multiplexing and forwarding of
incoming packages into one or more packet delivery
strategies.

– AttachDeliveryStrategy(IPacketDeliveryStrategy):
Attaches the given delivery strategy to the dis-
patcher. As soon as a delivery strategy is at-
tached, the dispatcher forwards incoming packets
to the strategy.

– DeliverPacket(SensorData): Called by the packet
analyzer to forward packets to this layer. Each

packet is then forwarded to all attached delivery
strategies.

• IPacketDeliveryStrategy: Interface to be imple-
mented for a concrete endpoint. The PacketFilter ver-
ifies if the sensor data value satisfies a filter condition,
before it is passed on.

– DeliverPacket(SensorData): Called by the dis-
patcher to deliver a package due to this delivery
strategy.

Figure 5: Dispatching a package

3.3 Packet Filtering
Any client might provide query statements during session
creation. A client might define what kind of sensor data it
is interested in and can expect data delivery that satisfies
those needs. Packet filtering has been implemented server-
side by query compilation and execution.

During session creation the server compiles any given query
Q into a set of instructions forming the program P . The
instruction set provides value comparison and transforma-
tion, higher-level mathematical functions and flow control
instructions. We use a simple one-phase compiler. Instruc-
tions are implemented as being instances of corresponding
classes for each specialized instruction type.

Program P is executed by a virtual machine (VM) for any
incoming sensor data packet and receiving client respec-
tively. The program input is the actual sensor data value
v and its sensor type st. The output is the result of c(v)
and c(t (v)) respectively and the transformed value t(v).
Input and output data exchange is handled by making use
of four registers the VM provides. The program executes all
instructions in P in sequential order under consideration of
flow control instructions.

4



To execute an instruction, the method m of the correspond-
ing class for that instruction is called. The method m has
access to control flow and registers through the instance of
the VM that is passed to it.

System performance might be improved by compiling Q
into native byte code. This strategy might benefit from
new features such as support for expression trees which had
been added to the .NET platform recently through the 2008
release.

3.4 Server Hosting and Configuration
Designed as an enterprise application, the SniffBee server is
implemented as a Windows service. This allows the auto-
mated execution of the application. For testing purposes,
there is also a console version of the server available (Sniff-
Bee.ServerTTY). To use the message queue as the delivery
strategy corresponding to the PacketToMessageQueueDeliv-
ery, the Microsoft Message Queue must be installed and a
message queue called SniffBee has to be created manually
at this stage of development.

The configuration of the sensor network includes the def-
inition of the basic ZigBee network infrastructure and the
configuration details of each node. A simple network is
defined by a network data object which holds the unique
network id and the devices it contains. Possible devices of a
ZigBee network are coordinators, routers and sensor nodes.
A device object is defined by its type, id, name, channel
and its assigned sensor profiles. The sensor profiles hold the
relevant information needed to extract the data the clients
are interested in from the raw data. This includes the unique
name of the sensor, the dimension unit and the bit position,
bit width and scale factor. A sensor profile could be assigned
to various devices.

This configuration is specified in an XML file, which rep-
resents the serialization of the server context used by the
system. Its location is specified in the application settings
of the server.

For ease of creating and editing the network details, a con-
figuration tool (Figure 6) is provided. It shows the network
as a tree of devices and its assigned sensor profiles.

3.5 Gateway
We provide three different gateway interfaces: Web Ser-
vice (pull-based), Message Queue (push and pull-based) and
.NET Remoting (pull-based). While sensor data is pushed
directly into the message queue by a specialized delivery
strategy (see also chapter 3.2), Remoting and Web Service
rely on a SessionStorage object which realizes packet queu-
ing and storage and holds meta-information about a session.

Access to SessionStorage is realized through Web Services
and .NET Remoting. However, .NET Remoting is limited to
the .NET platform, Web Services is also suitable for hetero-
geneous environments. Three methods of pull-based query-
ing can be distinguished: session management, meta-information
and data retrieval. The Web Service methods as we imple-
mented them shall be presented below.

Figure 6: SniffBee Network Configuration Tool

• Session Management deals with establishing and
closing a connection to the server and starting a session
during which data can be received.

– OpenSession

– CloseSession

– OpenQuerySession

• Meta-information: The following methods are used
for querying the status and the composition of the
network. With these methods, a client can receive
meta-information about all available networks, their
devices and their capabilities.

– GetNetworkList

– GetDeviceList

– GetDevice

– GetSensorProfile

• Data Retrieval: After opening a session, data can
be received by using the following methods.

– GetPacketCount

– GetSensorData

4. DEMO APPLICATION
There is a high number of possible applications that could
make use of the solution presented in this paper. Service
Oriented Architecture (SOA) plays a growing role in today’s
industry for building enterprise applications. Accessing sen-
sor networks through Web Services simplifies the integration
of sensor networks into enterprise applications without any
need to harmonize interfaces and communication. In pro-
duction processes there is usually a gap between the business
application and the technical application that controls and
monitors the production process. Crossing this gap by using
Web Services is an important step towards integrating two
totally different views on production processes. There are
several suppliers providing a middleware to integrate sensor
values (whatever sorts) into the business application but
they are all focused on wired technology and they rarely
provide Web Services to access these measurements.

5



Table 1: Client overview
Client Technology Data Source Used Sensor Data Visualization Purpose

1 .NET SOAP Gateway can be freely chosen
via GUI

time-graph, that re-
freshes every second

real time curves of
measured values

2 .NET SOAP Gateway luminosity values of a
predefined sensor

color changing user
interface reacting
when a threshold
exceeds

monitoring of values -
reacting with alerts

3 Java Microsoft
Message Queue

all the values from
the message queue

direct output of val-
ues to standard out-
put

logging of measured
values

4 Java SniffQL SniffQL query command-line based
input and output

specialized manual
queries to sensor
network

To demonstrate how the integration has been simplified,
we provide four demo clients using the different interfacing
methods.

Figure 7: Example of a GUI that access the sensor
network by using Web Services

5. FUTURE WORK
To allow multiple delivery strategies to be added to the
system, we propose a plug-in model which makes it easy
to implement the provided interface as well as build and
integrate it into the running system.

While the system is at the moment passively sniffing all
available data as well as the sensor nodes transmit all their
sensor values, lots of overhead traffic is generated. Energy
could be saved if the system would use configuration data
and query information to configure sensor nodes in a way
that satisfies the requirements of all clients. Furthermore
we are interested in supporting actuators as well.

Finally, we would like to provide a programming framework
to simplify the integration of diverse sensor technologies
via plug-in development. As we have several adaption and
extension abilities it seems plausible to provide an imple-
mentation framework with a clear rule-set on how to develop
plug-ins to evolve the strategy portfolio or connect a further
sensor technology approach.

6. CONCLUSION
In this paper, a middleware solution is presented to acquire
data from wireless sensor-networks through Web Services.
To archive flexibility, we provide interfaces for data collec-
tion and data distribution. Therefore, besides the presented
delivery strategies further could be implemented. The same

applies to the integration of further sensor-technologies. To
proof the general concept we provide an end to end demo-
system which uses ZigBee network communication and clients
consuming the collected data via the developed strategies.
Furthermore, to enhance usability, a user interface is in-
troduced which allows easy configuration. Finally, a query
language is presented to filter and manipulate sensor data
in a familiar (database-like) way.

7. REFERENCES
[1] S. R. Madden, M. J. Franklin, J. M. Hellerstein, and

W. Hong. Tinydb: an acquisitional query processing
system for sensor networks. ACM Trans. Database
Syst., 30(1):122–173, 2005.

[2] A. Woo. A new embedded web services approach to
wireless sensor networks. ACM, 2006.

[3] ZigBee Alliance - http://www.zigbee.org. ZigBee
Specification 4th quarter 2007.

6


