
A Framework for Configuration and Assembly of Routing Protocols for
Wireless Ad Hoc Networks

Rafael Pereira Pires
rafaelpp@lisha.ufsc.br

Antônio Augusto Fröhlich
guto@lisha.ufsc.br

LISHA - Laboratory for Software and Hardware Integration
UFSC - Federal University of Santa Catarina

PO Box 476 – 88049-900 – Florianópolis, SC, Brazil
http://www.lisha.ufsc.br/

Abstract

A great number of routing algorithms for wireless
ad hoc networks were proposed. Each one shows
some advantages in specific situations. In this work,
we present a system where it is possible to assem-
ble a routing protocol by choosing and configuring
some of the many proposed strategies. We drawn two
distinct scenarios with different parameters and pre-
defined requirements. Then we analyse the choice
and configuration of the routing algorithm over the
framework based on the expected results from the ap-
plication’s point of view. Our results show that our
system and strategy bring benefits in the sense of pro-
ducing personalized protocols, that adequately fits in
the target deployment environment.

1 Introduction

Dozens of routing algorithms for ad hoc wireless
networks were proposed. Usually, their efficiency
is demonstrated through comparisons with previous
approaches, where the protocols are simulated with
a certain configuration parameters in a set of differ-
ent scenarios. In this way, caused by great number
of options, difficulties in the moment of defining the
protocol for a certain application are generated. Tar-
geting to ease the search for the protocol that best
fits in the deployment scenario of a specific appli-
cation and that have the best performance under the
desired measures, we propose, in this work, a system
where is possible to choose the strategies that poten-
tially bring the best benefits from the application’s
point of view and then, to configure, to test and re-

configure them. This leads to the quick generation of
routing protocol instances that can be compared and
have their configuration parameters fine tuned until
the creation of a customized protocol to an applica-
tion.

Our system is built over a metaprogrammed
framework, originally created to ease the selection
of strategies and generate lightweight protocols in-
stances for parallel computing. We have adapted
the framework to the routing protocols for wireless
ad hoc networks domain and factored some of their
main strategies in order to generate complete proto-
cols.

The idea is, based on the well defined deployment
scenario and application’s requirements and expected
results, to select the different strategies of routing
algorithms found in literature and start a process of
configuring, measuring, comparing and adapting the
protocol’s parameters until getting the one that best
fits to the user expectations. We describe two dis-
tinct scenarios and define, from the very beginning,
their requirements and expected results. Then we se-
lect the strategies that would fit those requirements,
based on previously known strategies characteristics.
After that, we could run and compare, customize it
and get to the final protocol.

The next section describes our system and
presents some strategies used in routing algorithms
for ad hoc wireless networks. Section 3 presents
the scenarios used as base to our protocol adapta-
tion to the target applications. The section 4 shows
our achieved results. In section 5 we draw the con-
clusions and give our perspectives of continuing this
work.



2 Aggregating Routing Strategies to form a
Protocol

The metaprogrammed framework of lightweight
protocols [1] combines a series of metaprograms
based on generative programming [2]. It aggregates
basic communication strategies, like: fragmentation,
reliable delivery with confirmation and flow control.
By simply selecting the desired strategies to a cer-
tain application, it generates the lightweight protocol
ready to run on myrinet networks over the EPOS op-
erating system [3]. Our system uses the infrastruc-
ture made available by that framework, although we
work on a higher level, with more complex proto-
cols, that have some data structures and whose main
objective is to forward messages to the right destina-
tion.

The framework is compounded by:

• a set of strategies that will be joined to form a
protocol;

• a baseline architecture or base-kernel, that cor-
responds to the device driver where some point-
cuts are inserted in order to the strategies sub-
routines be called;

• a protocol generator responsible to combine the
strategies and generate the composite protocol;
and

• a configuration repository where the configu-
ration parameters and strategies selection are
stored.

Figure 1 illustrates the relations between them.
The key feature of being a metaprogrammed frame-
work is that the final object code will contain only the
select code, with the minimum required to the proto-
col to work as it is expected to. By static configu-
ration and generation we mean that those steps are
solved in compilation time, instead of carrying that
overhead to running time. That feature is specially
useful for dedicated applications, where the deploy-
ment scenario and the expected results are previously
known.

The first routing algorithms used in the
ARPANET, forerunner of the Internet, could be
divided into two classes: distance vector and link-
state. The former corresponds to the distributed
Bellman-Ford algorithm [4, 5], where each node
stores the next one that a message should be for-
warded in order to reach a specific destination. The

Baseline Architecture

Composite Protocol

+

Protocol Generator

Communication Strategies

Configuration

Repository

=

Final Component

Composite Protocol

Baseline Architecture

Figure 1. Metaprogrammed Framework and
the relation between its structures

latter consists in each node having to create, based
on the periodic advertisement from its neighbors, a
complete map of the network and then, using some
shortest path graph algorithm, they compute the best
route to each destination.

Primarily, they both used to make periodic broad-
casts in order to inform their neighbors what was
their view of the network and to forward other nodes’
view. To this strategy, known as proactiveness, a
counterpart was proposed, known as reactiveness,
where the routes are queried just when they are re-
quest by some node, avoiding the overhead of main-
taining routes to all possible destinations. In the
next subsections we describe the strategies we se-
lected to compound the routing protocols through the
metaprogrammed framework.

2.1 Flooding Strategy
Flooding is a routing technique where each node

forward every message to all its reachable neighbors
until it gets to the destination. In order to control the
potentially infinite number of retransmissions, means
of limiting it are necessary. One way could be the use
of a time to live field, being decremented in every
retransmission and, when it reaches zero, the mes-
sage would no more be forwarded. Another way is
to uniquely identify each flood message by putting
in its header a sequence number that, together with
the sender address, gives the flood id, allowing the
message to be discarded by nodes that have already
forwarded it. Those characteristics of flood control
are configurable features that can be selected to com-

2



pound the protocol.
Although it could waste resources because every

reachable node on the network will receive every
flood message, flooding is useful to compare with
other strategies. It is also used as part of reactive
protocols, when network wide queries are needed.

2.2 Proactive Strategy
The proactive strategy is responsible in making

periodic advertisements and forwards of routing in-
formation, in a way that every node are able to find
out the best route to all possible destinations, some-
times limited to a specific area. The advertisements
interval is a configuration parameter.

Proactive protocols presents less delay when a
route is requested, because they have already defined
it previously. In contrast, there are a waste of re-
sources in the advertisement messages. The over-
head needed to maintain routes to all possible des-
tinations may not be compensated when the nodes’
application send messages to just a few destinations.

2.3 Reactive Strategy
In the reactive strategy a request is made when a

route is solicited by the application. When the mes-
sage gets to the destination or some other node that
have a recent route to it, a route reply message is sent
back to the original sender.

The delay when a route is requested is greater, be-
cause it takes some time to query the route. But the
need of periodic transmissions is nonexistent, saving
bandwidth.

2.4 Distance-Vector Strategy
The distance-vector strategy manages the routing

table, keeping information about which node to for-
ward when some message arrives destined to an-
other one. The configuration parameters embraces
the timeouts that control stale routes and which met-
rics to consider in order to compare the weight of
routes.

Although every strategy can be turned on and off,
there are some dependencies and incompatibilities
that have to be observed. For example, when the Re-
active Strategy is enabled, the Flooding Strategy has
also to be, because the queries use flood messages.
The Flooding Strategy works as a routing protocol
by itself, as it delivers the message to the destination
while the Distance-Vector Strategy have to be com-
bined with the Proactive or Reactive Strategy.

Figure 2. Scenario 1 Topology

Figure 3. Scenario 2 Topology

3 Case Studies

In order to test our system we ran two distinct ap-
plications and scenarios. The first one would be a
set of sensors scattered in a forest aiming to measure
natural phenomena, even for environmental monitor-
ing or forecasting. The sample rate of each sensor
is around five times a minute and the messages are
short. Their data have to be centralized in a server for
future processing. A set of nodes acts as gateway be-
tween the wireless sensor network and the server. All
measures should be sent to one of them. The nodes
are battery driven and their lifetime should be maxi-
mized. Each node is geographically static. The net-
work is composed by 30 nodes. Figure 2 shows the
network topology.

The other case occurs in a meeting room. Each
participant have its own portable device. And they
should be able to get in touch with everyone else.
Although pronunciation from one person for all an-
other is possible, the major part of time they have
discussions between groups, in order to deliberate
some specific subject. The length and frequency of
communications here are greater, since they can ex-
change files and multimedia data. Each device’s ra-
dio range may not be symmetrically distributed in all
directions. Figure 3 illustrates the network topology.

3



4 Evaluation

We implemented the Baseline Architecture (sec-
tion 2) over unix sockets in order to simulate our sys-
tem. Each process represents a node, listening on a
different UDP port. The network topology was repre-
sented by its connectivity graph, with every outgoing
message being able to be seen by all adjacent nodes,
as would occur in a real single channel wireless en-
vironment.

The first application was implemented sending pe-
riodic messages to its gateway node. The time inter-
val varied randomly within 9 and 12 seconds to sim-
ulate non synchronous behavior. The message size
was of 100 bytes. The second one starts with a coor-
dinator node sending a set of messages to every other
node. After that, all nodes start to communicate bidi-
rectionally among small groups. The initial message
corresponds to 1024 messages of 1KB each, and the
peer communications rounds of 10 messages of 500
bytes.

We reined the above described applications chang-
ing the selection of the routing protocol under it. The
combinations were:

• Flooding Strategy alone;

• Reactive, Flooding and Distance-Vector Strate-
gies combined, resulting in a similar protocol to
AODV (Ad Hoc On demand Distance-Vector)
[6]; and

• Proactive and Distance-Vector Strategies com-
bined, giving a protocol like DSDV [7].

As it is an ongoing work, our prototype is still
being developed. However, we could notice some
patterns considering the strategy features and the ap-
plications behavior. In the first application, due to
the fixed destinations - the gateways -, the routing
table when using the second combinations of strate-
gies was dramatically smaller than the proactive ap-
proach. The flooding strategy, as predicted, made a
lot of unnecessary forwards, that could cause quick
battery discharge. Such overhead would only be jus-
tified on applications where almost every communi-
cation is broadcast, like the first phase of the sec-
ond application, or when mobility is so great that any
protocol but flooding would be quick enough to deal
with the topology changes.

From the second application we could see that
routing tables of both proactive and reactive strate-

gies were almost the same, as communication be-
tween every peer occurred. The differences in the
delay after requesting a route on proactive or reactive
strategies were not significant, because in both sce-
narios there was no topology changes and new route
requests in reactive approach was not necessary.

5 Conclusions and Future Work

We presented here some insights of statically com-
bine routing strategies for ad hoc wireless networks.
This approach could bring benefits in getting the best
protocol to a specific application.

From our experiment, we could get hints that
the reactive strategy presented better performance
for both application scenarios we choose. We also
saw, from the second scenario, that flooding could
not waste much resources when delivering broadcast
messages, which lead us to also consider dynamic
protocols, to adapt in applications with multiple be-
haviors.

We plan to give robustness to our implementation
and add a lot more strategies, like hierarchical, ge-
ographic and multicast routing protocols, to cover a
wider range of scenarios. Future simulations should
also include scenarios and protocols that give support
for mobile nodes.

References

[1] T. R. C. dos Santos and A. A. Fröhlich, “A customiz-
able component for low-level communication soft-
ware”, in 19th International Symposium on High Per-
formance Computing Systems and Applications, May
2005, pp. 58–64, Guelph, Canada. IEEE.

[2] K. Czarnecki and U. Eisenecker, Generative
Programming: Methods, Tools, and Applications,
Addison-Wesley, 2000.

[3] A. A. Fröhlich, Application-Oriented Operating Sys-
tems, GMD Research Series. GMD - Forschungszen-
trum Informationstechnik, Sankt Augustin, Germany,
Aug. 2001.

[4] R. Bellman, Dynamic Programming, Princeton Uni-
versity Press, 1957.

[5] L. R. Ford and D. R. Fulkerson, Flows in Networks,
Princeton University Press, 1962.

[6] C. E. Perkins and E. M. Royer, “Ad-hoc on-demand
distance vector routing”, in 2nd Workshop on Mobile
Computing Systems and Applications. WMCSA, Feb.
1999, pp. 90–100, New Orleans, USA. IEEE Press.

[7] C. E. Perkins and P. Bhagwat, “Highly dy-
namic Destination-Sequenced Distance-Vector Rout-
ing (DSDV) for mobile computers”, SIGCOMM
Computer Communication Review, vol. 24, no. 4, pp.
234–244, 1994.

4


