
The Impact of Address-Assigning on Network
Routing Paths

Felipe A. Moura Miranda, Carlos A. dos Reis Filho and Rogério Esteves Salustiano
School of Electrical and Computer Engineering (FEEC)

State University of Campinas (UNICAMP)
Campinas, Brazil

{fmiranda, carlos_reis, rsalusti}@lpm.fee.unicamp.br

Abstract— The use of hierarchical identifiers as a mechanism of
network addressing has proven to be inadequate as the Internet
expands. Since the size of border gateway routing tables is in
direct proportion with the growth of the Internet and with the
increasing number of accesses, the latency time increases at a
higher rate and processing capability is steadily more
demanding. Therefore, a more efficient routing mechanism is
unquestionably required for the future of the Internet. Peer-to-
peer networks brought about a novel routing mechanism, based
upon a cooperative behavior, which has shown remarkable
results. On peer-to-peer networks, each node retains only a
limited number of identifiers in a structure called DHT
(Distributed Hash Table), which requires less memory as well as
reduces the searching time. There is a key difference between the
current Internet routing mechanism and existing peer-to-peer
networks: while in the first the identifiers follow a hierarchical
addressing, in the second the addressing is flat. By providing the
flat nature of the second an appropriate ruling, the routing
mechanism can be significantly improved. This paper addresses
this particular problem by showing, through simulations, how
address-assigning heuristics affect the number of hops on a
routing path. It contributes by providing elements that can be
used to establish criteria for choosing the appropriate heuristic.

Keywords- Internet, Routing, Address-assigning heuristic

I. INTRODUCTION

The Internet evolution is marked by many changes on its
structure, dimension and purposes [1] [2]. Since its beginning
in 1969, Internet has experienced an outstanding success and
development. Within a very short time, the Internet evolved
from an specialized military communication tool into an
omnipresent virtual road, which provides mankind countless
possibilities of interactions. Technically, it implements a
network of networks with worldwide dimensions using many
varieties of backbones, devices and structures. In the 90’s,
many problems related with the Internet growth were revealed.
Its colossal size, the new devices that can connect to it and the
new necessities of the users revealed some fragile points of its
architecture and of the TCP/IP model [1] [2] [3].

Instead of pursuing solutions to fix the Internet problems
known at that moment, a paradigm called overlay networks,
which was seldom used, bloomed as a means for developing
new applications. These overlay networks [4] brought about
some interesting mechanisms targeting to create abstractions of

the Internet structure and topology making it easier for
programmers to use it as a development substrate.

Peer-to-peer networks are an interesting outcome of this
abstraction of the Internet structure, by this feature, peer-to-
peer networks can implements its own topology, addressing
structures and routing mechanisms. Some of the existing peer-
to-peer networks use flat labels [6][7][8] to identify both
services and nodes. Another property is the implementation of
routing based on a cooperative approach among the network
nodes. In cooperative routing there is no need for a node to
store information about a large number of other nodes as it is
done in BGP (Border Gateway Protocol) [9]. Instead, the
cooperative routing uses a chain of short lists, called DHT
(Distributed Hash Tables), that point to nodes, thus the
processing burden per node is much smaller.

In order to establish a cooperation relationship between
nodes toward accomplishing an aimed connection three
protocols are normally used: Pastry [7], VRR [8] and Chord
[6]. All of these protocols use a table lookup mechanism to find
the next node to be included in the route. The two first
protocols adopt a criterion that takes into account the physical
and virtual proximity of the nodes to build the table and the
elected members are called neighbors. The third protocol,
called Chord differs from the two others in the way it chooses
the members of the DHT. Instead of using the criterion of
physical or virtual proximity, the members of the DHT are
chosen with basis on a proprietary algorithm, which requires
information of how the nodes identifiers are distributed as one
of its arguments. The name given to the table members is
successor. Therefore, it is to be expected that any change in the
distribution of the node identifiers have an impact on the
performance of the network. This paper addresses an
evaluation, by means of simulations, of how the routing paths
of a network are affected by changes in the distributions of its
nodes identifiers.

II. CHORD

Chord [6] is a peer-to-peer DHT-based lookup protocol.
According to [6], Chord provides support for just one
operation: given a key, it maps a key onto a specific node. It
permits that a distributed set of participants can agree on a
single node as a rendezvous point for a given key. But, in order
to reach this only goal, Chord has some interesting structures
and mechanisms.

This work has been supported by Brazilian Agency for Personnel
Development (CAPES - Brazil) and National Council for Scientific and
Technological Development (CNPq - Brazil).

A. Chord Ring

Chord allocates both key and node identifiers in an m-bit
circular space, called Chord ring. These identifiers are
arranged in the Chord ring on an increasing clockwise order,
from 0 to 2m - 1.

B. Successors

For a node in a Chord ring, the successors are its partners
for achieving some goals in the network. A node can store
routing information regarding a small number of other nodes
because of the cooperative behavior between a node and its
successors. The routing on a Chord network is made by the
cooperative relationship of a node and its successors.
Therefore, a node heavily depends on some successors in order
to reach other nodes through a short routing path. The complete
algorithm used to find the successors of a given node is
described on [6].

C. Finger Table

Chord uses a structure called finger table to store routing
information about other nodes in a Chord network. This
structure keeps m entries to store routing information for the
other nodes in the Chord ring, these nodes that have their
routing information stored in the finger table are called
successors. Differently from other routing tables, a finger table
always preserves the same number of entries in its structure.

D. Lookup and Routing

A lookup operation depends directly of the routing
information stored in the finger table. The next hop of a
package exchange is always a successor of the node, following
the clockwise movement. The selection of the next hop of a
lookup operation is made by analyzing the interval field of the
finger table of each traversed node in the routing path.
According to [6], on a network with N nodes, lookup
operations can be resolved traversing at most O(log N) nodes.

E. Identifiers

Chord has no constraints about the structure of the
identifiers it looks up. Its identifier space is completely flat.
Node identifiers are usually generated by a consistent hashing
of their IP addresses [10]. Hereinafter, in this work the term
“node identifier” will be changed by “virtual address” since it
is a more suitable term.

III. SIMULATIONS DETAILS

To analyze how the use of different types of addressing
heuristics would actuate on the length of the routing paths of a
small Chord network, a simulator was built. This simulator was
implemented using the Java language [13] due to its
portability, which allows the simulator to run on different
operating systems, and for its enormous quantity of classes,
which gives the possibility to expand the features of the
simulator, and the analysis that it givens, in an easy way [11].

Another important Java feature for the simulator was its
BigInteger class [12]. BigInteger objects can handle huge
integer numbers. Without the BigInteger class features, any
Java program would not be able to compute numbers bigger
than 263 - 1, feature that will be very important for possible
future works with longer virtual addresses.

A. Chord Implementation

In order to make the initial analysis, some characteristics
presented in Chord protocol were used in the simulator: its
model of finger tables; its simple and reliable lookup algorithm
and its unrestricted structure for virtual addressing.

1) The Finger Table: Following Chord protocol, the
quantity of available entries in the finger table of each
simulated node is the same as the number of bits used in the
keys/nodes identifiers of the simulated network. As IPv4,
which is the current most used protocol in computers
networks, has addresses of 32 bits, the length of the identifiers
used by the simulated nodes had 32 bits too, implying on
finger tables with 32 entries, permitting that a single
simulated node stores routing information of up to 32 different
nodes.

2) The Lookup Algorithm: The lookup was made following
the clockwise movement in the Chord ring, from the initial
virtual node to the target node, where any node between the
sender and the target was responsible for find the next hop of
the routing path. At each node traversed, the next hop of the
path was dinamicaly calculated. According with [6], the
Chord protocol can be implemented either in a recursive or in
an iterative style, on this work, it was simulated using the
recursive style.

3) Virtual Addressing: Since the long length of the virtual
addresses, which uses 32 bits, and the unconstrained key/node
identifier (virtual address) structure of Chord, the quantity of
different virtual addresses that can be generated is larger than
4 billion. In order to work with virtual addresses, BigInteger
objects were used, permitting that all the range of different
virtual node identifiers used on the simulations (0 to 2³²) could
be computed.

B. Routing Path Length

In order to calculate the length of the routing paths of a
single node, all the routing paths linking this node to all the
others were traced. The length of each routing path was
determined by the quantity of hops made until reach the target
node. After counting how many hops there were on each
routing path, they were organized by their own length. In order
to calculate the length of the routing paths of all simulated
networks, these procedures were repeated until all the nodes
were selected as the initial point of the routing paths.

Since Chord has no constraints about its virtual addresses
structures, all the virtual addresses were made using the same
structure: integer numbers using the BigInteger objects.

IV. EXPERIMENTS AND RESULTS

In order to make an initial analysis of how the routing path
length would be affected by the chosen heuristic that assigns
the virtual addresses on the network, three different heuristics
(Contiguous, Fibonacci Sequence and Exponential Growth) for
the virtual addresses distribution were selected. As a kind of
basis for comparison with all the other results, simulations of
how the network would behave if all the virtual addresses were
distributed randomly were made.

As an initial work, just small networks were simulated. The
main reason for it was that one of the chosen heuristics, the
Exponential Growth, only permits 32 different addresses using
32 bits, which is the number of bits on an IPv4 identifier.

The statistics presented at all the scenarios were made
analyzing the number of hops on each routing path linking
every single node to all the other nodes in the entire network.

A. Scenario I – Random Virtual Addressing

On this scenario, all the random virtual addresses used in
the simulations were created by the method
randomAddressCreator(). This method creates pseudorandom
virtual addresses, uniformly distributed between 0 and 2³², Fig.
1 shows an example of a network generated on this scenario.
The value was limited to 2³² because IPv4, which is the
currently most used network protocol, uses 32 bits for location
and identification of the nodes.

Aiming for results with more reliable values, every scenario
in the random virtual addressing was simulated 100 times,
where each simulation was made generating a new
pseudorandom virtual addressing distribution for all nodes in
the network. After all this simulations, an arithmetic mean was
calculated with the values taken from each one of the
simulations.

Figure 1. Example of a network generated on Scenario I

The results showed in Fig. 2 demonstrate that the random
virtual addressing does not grant a uniform distribution
between the routing path cases. At the simulated networks,
most destinations would be reached using routing paths with
one or two intermediary nodes between the initial node and the
target node. But with the growth of the simulated network,
there were a spreading of cases, where even results with six
intermediary nodes were obtained.

Figure 2. Random Virtual Addressing

B. Scenario II – Contiguous Virtual Addressing

On this scenario, all the virtual addresses were distributed
contiguously on the initial part of the Chord ring, in a way that
the nodes were virtually adjoined to each other (Fig. 3).

Figure 3. Example of a network with contiguous virtual addresses

On Fig. 4, the results of the simulations showed that the

contiguous virtual addressing did not give great changes on the
routing paths length. The results obtained by the contiguous
virtual addressing were similar to the results obtained by the
random virtual addressing simulations.

Figure 4. Contiguous Virtual Addressing

Similarly to the random virtual addressing simulations,
most destinations would be reached passing by up to two
intermediary nodes. But with this contiguous heuristic, the
quantity of hops on the routing paths was more folded than in
the random heuristic. The worst cases using this heuristic had
only four nodes between the initial node and the target node.

C. Scenario III - Fibonacci Sequence Virtual Addressing

Using this heuristic, all the virtual addresses were generated
and distributed following the Fibonacci Sequence (Fig. 5). The
Fibonacci Sequence generates, in the interval from 0 to 2³²,
exactly 46 different numbers, but aiming dimension
equivalence between the simulated scenarios, only the firsts 32
Fibonacci numbers of the sequence were used on this scenario.

Figure 5. A network with seven nodes using Fibonacci virtual addresses

The simulations showed that the virtual addressing using
Fibonacci Sequence (Fig. 6) had a great impact on the routing
paths length. With this heuristic of virtual addressing, most
routing paths could reach its destination using only one
intermediary node, or they can reach its destination directly,
without any intermediate node on its routing path. There was
also an improvement on the distribution of the number of hops
in the routing paths, the worst case had only two intermediary
nodes between the sender and the target.

Figure 6. Fibonacci Sequence Virtual Addressing

D. Scenario IV - Exponential Growth Virtual Addressing

The virtual addresses in this scenario were created
following an exponential growth with base 2. This kind of
heuristic permits only 32 different virtual addresses using 32-
bit identifiers (like IPv4), but, as an initial research, the goal of
this work was simulate only small networks, so this quantity of
different virtual addresses was adequate for the simulations.

The simulations using this heuristic generated exceptional
results, present on Fig. 7. More than 50% of all the routing
paths had no intermediary nodes between the starting point and
its end point, in other words, most routing paths could link two
nodes directly. On this scenario, the worst case had only one
intermediate node between the initial node and the target node.

Figure 7. Exponential Growth Virtual Addressing

V. CONCLUSION

The simulations showed that there are differences on the
lengths of routing paths of a network, depending on the how
the nodes identifiers are distributed.

Results given by Random virtual addressing followed the
maximum quantity of O(log N) hops in a routing path, but there
were a few cases in which this limit was broken. Contiguous

virtual addressing did not make significant changes in
comparison with the random scenario.

The most striking results were obtained by Fibonacci and
Exponential virtual addressing. At the Fibonacci scenario, the
longest routing path had just three hops until reach its target,
and at the Exponential scenario all the lookups were resolved
directly (one hop) or passing by just a single intermediate node.

From the simulation results, one can clearly conclude that
the use of some heuristics can improve the connections
between a node and its successors, since they lead to shorter
routing paths in a lookup operation

The disadvantage of the use of a heuristic for virtual
addressing is that it needs a kind of supervisor for the address-
assign task, and the two heuristics presented on this work
(Fibonacci and Exponential) had to discard some addresses by
its nature. And as the key storage was not considered, the
impact of the use of these heuristics could not be calculated.

ACKNOWLEGMENTS

Special thanks are due to Prof. Mauricio Magalhães, Ms.
Catalina Zapata and Ms. Ellis Sandra S. Lima for suggestions
and fruitful discussions.

REFERENCES
[1] B. M. Leiner et al. 10 Dec. 2003. Histories of the Internet: A Brief

History of the Internet. Retrieved from:
<http://www.isoc.org/internet/history/brief.shtml>.

[2] A. S. Tanenbaum, “Computer Networks,” 4th edition, Prentice Hall,
New Jersey, USA, 2003, 912p.

[3] V. Cerf and R. Kahn, “A Protocol for Packet Network
Intercommunication,” IEEE Trans. Comm., Vol. 22, No. 5, 1974,
pp.637–648.

[4] R. Hagens, N. Hall and M. Rose. Use of the Internet as a Subnetwork
for Experimentation with the OSI Network Layer. Internet Engineering
Task Force, Feb 1989. RFC 1070.

[5] R. Schollmeier. A Definition of Peer-to-Peer Networking for the
Classification of Peer-to-Peer Architectures and Applications,
Proceedings of the First International Conference on Peer-to-Peer
Computing, IEEE 2002.

[6] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan.
Chord: A scalable peer-to-peer lookup service for Internet applications.
In Proc. ACM SIGCOMM’01, San Diego, CA, Aug. 2001.

[7] A. Rowstron and P. Druschel, “Pastry: Scalable, decentralized object
location and routing for large-scale peer-to-peer systems,” in IFIP/ACM
International Conference on Distributed Systems Platforms
(Middleware), Nov. 2001, pp. 329–350.

[8] M. Caesar, M. Castro, E. Nightingale, G. O’Shea, A. Rowstron, “Virtual
ring routing: network routing inspired by DHTs,” ACM SIGCOMM,
September 2006.

[9] Y Rekhter and T. Li. A Border Gateway Protocol 4 (BGP-4). Internet
Engineering Task Force, 1995. RFC 1771.

[10] FIPS 180-1. Secure Hash Standard. U.S. Department of
Commerce/NIST, National Technical Information Service, Springfield,
VA, Apr. 1995.

[11] H. M. Deitel and P. J. Deitel, “Java: how to program,” 4th edition,
Prentice-Hall, New Jersey, USA, 1999, 1568p.

[12] Sun Mycrosystems, Class BigInteger.
<http://java.sun.com/j2se/1.5.0/docs/api/java/math/BigInteger.html>.

[13] J. Gosling, B. Joy, G. Steele and G. Bracha. The Java Language
Specification. 2nd edition
<http://java.sun.com/docs/books/jls/second_edition/html/jtitle.doc.html>

