

Implementation of a platform independent
client software for the GO Bluebox System

Nils T. Kannengießer
and

Thomas Ladehoff
Faculty of Computer Science and

Electrical Engineering
Kiel University of Applied Sciences

Kiel, Germany

Thorsten Knutz
GO Systemelektronik

Kiel, Germany

Helmut Dispert
Faculty of Computer Science and

Electrical Engineering
Kiel University of Applied Sciences

Kiel, Germany

Abstract—The BlueBox is a dedicated data acquisition
system produced and commercialized by the North
German SME GO Systemelektronik1. GO develops
innovative systems for industrial measurement and
control applications, starting out with individual
single sensor solutions and expanding to the BlueBox,
a complex general purpose system. Typical
applications for the BlueBox can be found in the area
of environmental monitoring, e.g. in the aquaculture
industry. In this paper we discuss a software-based
extension and interface designed for the BlueBox. The
software, developed in Java, allows control of the
BlueBox as well as reading and displaying BlueBox-
acquired sensor data.

Keywords: Data Acquisition, Sensors, Actuators,
Java Technology, Java Applets.

I. Introduction
Modern data acquisition systems are strongly

based on microcontroller systems connected to a
variety of sensors and – to allow full control – to
actuators. Whereas the microcontroller systems are
in most cases relying on standard architectures and
industrially available products, the necessary
sensor/actuator units as well as the software are
often custom-made.

GO Systemelektronik, an SME based in Kiel,
Northern Germany, has been dedicated to the
development of complex and innovative data
acquisition systems, greatly implementing
sophisticated sensor and when required actuator
systems. Their major field of application is
environmental monitoring with a strong emphasis
on aquacultural systems used world-wide.

Although the BlueBox (as the master module
for all connected slave ssensors) provides several
interfacing and communication channels (e.g. using

1 http://www.go-sys.de

CAN bus), a generic way for using the systems over
Internet-based channels has been missing. The
existing legacy system is MS Windows based.

In this paper we present a new software system
that has been developed under the requirement of
being totally platform independent, allowing the
display of BlueBox-based sensor data. Thus the
way will be opened for generic monitoring and data
acquisition systems.

Considering the current BlueBox system design
based on standard windows software, it was
decided to develop the new program package using
Java Technology, which automatically leads to a
platform independent design, considering that Java
has been developed with that goal in mind. Java
itself can be employed in different ways to develop
and apply platform independent software.

For this R&D-project is has been decided to use
the Java Applet technology. Java Applets have been
around since the first realization of the Java
environment. Recently a revitalization of the Applet
philosophy could be observed.

The BlueBox system software incorporates its
own webserver. Therefore the Java Applet can be
easily accessed and loaded into the remote client
systems.

II. Background
The BlueBox provides its own services, which

are available through TCP/IP to every network or
internet client.

On Port 14111 (TCP) the box is waiting on its
command shell so that it is easily possible to get
some sensor information by using terminal software
like HyperTerminal or Telnet.

The applet software is mainly created for
viewing sensor data. Therefore only commands for
receiving information are used in this project.
Control and management functions are not
implemented in the current version presented in this
paper..

In order to create this application within a
reasonable amount of time the applet uses the
libraries jFreechart and Jcalendar, which are both
licensed under LGPL.

A. Structure of the applet
The applet is divided into three layers (Java

packages) to achieve a clear logical separation
between the different program parts.

- blueboxapplet.gui
Implementation of the Graphical
User_Interface.

- blueboxapplet.domain
Implementation of the processing tasks (e.g.
analysis of sensor data) and the communication
with the BlueBox

- blueboxapplet.common
Classes that are used in the other layers.

Connection to the Bluebox
The connection between Bluebox and applet is
based on sockets using the TCP/IP protocol.
getserialno BlueBox serial number
getstarttime Get database starttime(GMT)
getsensorno Number of sensors
resetdam Set DAM pointer to first DAM
getdam Show next DAM info
resetsensor Set sensor pointer to first sensor
getsensor Show next sensor info
getsensordata Show sensor data
getadamnr Number of actuator DAMs
getadam Show next actuator DAM info
getactuatornr Number of actuators
getactuator Show next actuator
gettime Get BlueBox date & time
getposition Get GPS or GEO position
getstatus Get BlueBox status information
gettimeserver Get NTP status
password(pw) If password is required
gdb(…) Get database entries
getchangelog(..) Get changelog entries
quit Close connection

Table 1 - BlueBox commands (shorted) [2]

The connection establishment and all following
communication are encapsulated in the class
BlueboxCommunicator of the package
blueboxapplet.domain. The host and port of the
Bluebox server are passed to the constructor. A
second constructor is provided, which determines
the host automatically.

After object creation the connection is
established by calling the method initConnection
which creates the socket.

The requests and responses are represented by
strings sent over the network (for available request
commands see table 1).

B. Receiving and processing the data
Sending and receiving data to and from the server is
done by a generic method, named
getServerResponse. It takes the request string as an
argument and returns the received data in a list of
strings (Java class ArrayList). Generally each
element in the list represents the string of one data
packet received from the server.

To determine the end of an incoming data
stream, the received string is checked for a certain
end condition (i.e. a certain string contained in the
data). Therefore the method takes a further
parameter.

This method getServerResponse is called by the
methods, which analyze the data of the server:

- getSensorList
Receiving the list of sensors from the database

- gdb
Receive the data of a sensor (same name as the
Bluebox command)

The most complex parts of these methods are
processing the data.

In the method getSensorList one sensor after the
other is read in a loop, because the server sends
only the data of one sensor per request (request
string getsensor).

The strings coming from the server get analyzed
and for each sensor a new Sensor object is created.
These objects are added to a list that is returned to
the caller.

The method gdb takes the sensor and the start
and end time as input parameters and builds the
request string with this information.

The received data is saved in a list of strings
(according to the return value of method
getServerResponse). Each list entry contains several
lines, which represent the database entries. The data
in every line has to be extracted, which is done by
the help of a regular expression.

The values of the lines are saved and put into a
SensorData object, which gets also the timestamp
of the first received database entry. Afterwards this
object is returned.

The data produced by getSensorList and gdb is
used by the GUI to build the selection of the
sensors and the chart displaying the data of the
chosen sensor.

C. The GUI
The GUI is divided into two parts. On the left

side there are the options and controls and on the

right side the generated diagram (or nothing at start-
up).

The left part is created by using the Netbeans
Form Editor for easy adjustment of controls in
further applications. The sensor names for the drop
down-box are generated just in time, when starting
the applet by fetching the sensor list from the
server.

The interface itself is currently in German.
After selecting the proper values a short check
routine is looking for a correct period and chosen
values before passing the values to the gdb method.

After receiving the data by the gdb method it is
transferred directly to the classes of the jFreechart
library, which are responsible for generating the
diagram.

jFreechart has a lot of options like zooming or
saving the current view as an image which was one
of the reasons for using it.

Figure 1 – Complete Form for application

Figure 2 - jCalendar for choosing the date

Figure 3 - Command interface

III. Conclusion
As Java is platform independent we created an

easy to use applet in addition to the existing
windows application. Our approach is that this Java
applet is also 100% usable under Linux, MacOS
and other operating systems, which support Java.

References
[1] Eric Roberts, "Resurrecting the Applet

Paradigm", Proceedings of the 38th SIGCSE
technical symposium on Computer science
education, ACM, March 2007, pp. 521-525.

[2] GO Systemelektronik, Germany
www.go-sys.de

[3] jCalendar
www.toedter.com/en/jcalendar/index.html

[4] jFreechart
www.jfree.org/jfreechart

jCalendar

Hour (0 am to
23 pm)

jCalendar

chosen
sensor

Commandbutton
for requesting
and showing the
timeperiod

Statuswindow

jCalendar

Hour (0 am to
23 pm)

chosen
sensor

Commandbutton
for requesting
and showing the
timeperiod

Statuswindow

jCalendar

