Transceiver Design Basics

Renesas Technology Europe

Systems Platform
Dr. Mirco Pieper

13/10/2009

Overview

- Communication chain
- Main implementation parts of TX and RX
- Details for embedded modem implementation
\square The new RX microcontroller

Communication chain

TX	RX
-Data source / data modulator (MCU)	■Anti aliasing filter
-Low pass filter for image removal	-Automatic gain control
-Transmission amplifier	DData demodulator (MCU)

Automatic Gain Control solutions

High performance AGC
-Variable gain amplifier (VGA) needed
-Gain range depends on VGA (linear)
Digital interface or DAC needed to control VGA

Discrete AGC
DEach gain stage requires Op Amp
-General purpose Op Amp
-IMCU must have several ADC inputs

Automatic Gain Control solutions

Analogue switch based discrete AGC
DAnalogue switch needed
-Digital interface to control switch needed
-Number of gain stages depend on analogue switch
-Only one Op amp needed
-Only one ADC input needed

Discrete AGC

-Same performance as above
-No analogue switch needed
-No interface needed
-Number of gain stages depend on ADC inputs

Data capturing

- Incoming data must be capturing while previous data are processed!
- DMA based Ping-Pong buffer
- Data are written to the Ping-buffer while data are read from the Pong buffer
- Pong-buffer has to be processed before Ping-buffer is full
- After Ping-buffer is full switch buffer pointers
- Incoming data rate and buffer size define the available processing time

General signal processing overview

RX state machine

- Wait for signal
- Energy detection
- Envelope detection
- Preamble detection
- Channel estimation
- Synchronization
- Calculate starting point of data
- Data demodulation

What is needed to receive a frame?

- How to detect a frame?
- How to compensate channel impact?
- How to set up automatic gain control section?
- Add a preamble (excellent aperiodic autocorrelation properties) to detect a frame in noise environment!
- Use preamble or additional training section for channel equalization

FFT analysis

DRadix-2
-Radix-4
-Split Radix FFT (SRFFT)
-Fast Hartley Transform (FHT)
-Quick Fourier Transform (QFT)
IDecimation-in-Timer-Frequency (DITF)
Mathematical operations involved in a 1024-point complex FFT

Number of operations is equivalent to speed on CISC architecture	Algorithm	Float Mults	Float Adds	Int Mults	Int Adds	Bin Shifts
Radix-2	20480	30720	0	15357	1024	
Radix-4	15701	28842	336	8877	2738	
Fastest implementation on RISC architectures due to pipelining and cache usage	SRFFT	10016	25488	502	12448	2937
	FHT	18704	32056	0	8367	4246
	QFT	8448	31492	16	70058	316
DITF	16640	28800	1076	18839	1086	

Second Order Structure-Filter

-Convert an IIR Filter to cascaded IIR filters of lower order (2 ${ }^{\text {nd }}$ order)
-Filter is stable if each sub-filter is stable
Less quantization error impact of filter coefficients

$$
H(z)=\frac{\sum_{n=0}^{6} a_{n} \cdot z^{-n}}{1-\sum_{n=1}^{5} b_{n} z^{-n}} \sum H(z)=\frac{\sum_{n=0}^{2} a_{n 0} \cdot z^{-n}}{1-\sum_{n=1}^{2} b_{n 0} \cdot z^{-n}} \cdot \frac{\sum_{n=0}^{2} a_{n 1} \cdot z^{-n}}{1-\sum_{n=1}^{2} b_{n 1} \cdot z^{-n}} 1-\frac{\sum_{n=0}^{2} a_{n 2} \cdot z^{-n}}{1-\sum_{n=1}^{2} b_{n 2} \cdot z^{-n}}
$$

Sliding window based filtering

RMPA - Repeat Multiply and Accumulation

- Performs sum-of-product operation, with the
- multiplicand address indicated by A0,
- the multiplier address indicated by A1, and
- the number of operation indicated by R7R5.
- The result is stored to R3R1:R2R0 as 64-bit data.
- Cycles of word based RMPA

```
\square R32C: 11+1.5m* cycles
- M32C: 7+2m* cycles
- M16C80: 7+2m* cycles
\square M16C: 6 + 9m*
- M16C Tiny: 6 + 9m*
*m is the number of operations
```


Fast Convolution -
 Frequency domain vs. Time domain

Comparison of $32^{\text {nd }}$ order FIR-filtering based on convolution and FFT.

Frequency domain

-960 input values must lead to 991 output values
-512 point FFT (zero padding)
DFFT $=>(N) \log _{2}(N)$ operation
=> 4608 * 2 = 9216 operations
-Required operations

- FFFT (9216)
-Filter tabs are pre calculated
-1024 mults
-IFFT (9216)
- 33 additions
$\Rightarrow 9216+1024+9216+32=$ 19488 operations

Overlap and Add Method

- Continuous data stream is split into segments due to ping pong buffering
- Signal processing of first and last part of buffer is related data of previous and following buffer
- Overlap and Add method to combine adjacent data

The RX Concept

- Enhance the current Renesas 16 and 32 bit CISC device families to meet future market requirements

RX Target Indices

- The aim is to realize higher maximum operating frequency, better performance, improved code efficiency, and lower power consumption than previous products, by enhanced design techniques and utilising 90 nm technology.

CPU		Comparison with previous products	Design targe
Maximum operating frequency (MHz)		5X	200 MHz
Processing performance (MIPS/MHz)		2X	1.65 MIPS/M
Code efficiency		30\% im	ovement
Low power consumption (CPU current $\mathrm{mA} / \mathrm{MHz}$)		1/3	$0.03 \mathrm{~mA} / \mathrm{MH}$
High integration (max. flash memory capacity)		$4 \times$	4 MB

Features of RX CPU - Improved Performance

Renesns

RX610 Group Specifications

Features: 165MIPS, 50mA and single cycle Flash access at 100 MHz operation

10bit ADC 4ch x 4unit

- High-performance CPU

- High-speed operation: Single-state basic instruction execution 10ns(100MHz@3.0 to 3.6V)
- 32bit multiplier/divider, multiplier-accumulator and singleprecision FPU
- On-chip memory
- Flash: 2 MB/RAM 128 KB
- Flash: 1.5 MB/RAM 128 KB
- Flash: 1 MB/RAM 128 KB
- Flash: 768 KB/RAM 128 KB
- No flash memory/RAM 128 KB
- Peripheral functions
- -External bus expansion: 16-bit separate bus (ROM/RAM I/F, byte control SRAM I/F)
- -Transfer module: DMAC and DTC
- -Timers:

High-performance general purpose timer: 16 bits $\times 12 \mathrm{ch}$ (TPU)
Timer optimized for OS and similar applications: 16 bits $\times 4 \mathrm{ch}$ (CMT)
General-purpose timer: 8 bits $\times 4 \mathrm{ch}$ (TMR)

- -High-speed 10-bit A/D converter (conversion time: $1 \mu \mathrm{~s}$)
- -10-bit D/A converter x 2ch
- -Communication functions: Clock synchronous/asynchronous SCI x 7ch I2C x 2ch (Fast-mode Plus)
Development environment
- On-chip debug emulator
- Full emulator
- Package
- -LQFP144, BGA176-pin

RX610 Group Block Diagram

Modulation basics

-

-DBPSK / QPSK

-DCSK

Connect short waveforms to make long Basic Waveform

Rotate Basic Waveform to make different 64 patterns or 16 patterns waveforms

