Digital Real-time Audio Frequency Spectrum

Analyzer Development for Audio Devices
G. Adamidis, T. N. Kapetanakis, and |I. O. Vardiambasis

Chania ,Crete, Greece
AmiEs 2011

[y

Broadband Communications & Electromagnetic Applications
(BCEMA) Laboratory,

Department of Electronics
Technological Educational Institute (TEI) of Crete,
Chania Branch, Crete, Greece

AmiEs 2011, September 22 - 24, Chania, Crete, Greece




A digital, real-time audio frequency spectrum analyzer
circuit for audio devices is presented in this work.

This circuit could be useful to anyone who would like to
embed it in an audio device or use it as a stand-alone
unit.

Spectrum analyzers are employed in most of the modern
signal processing systems.

Spectrum analyzers measuring the distribution of signal

energy In frequency domain.

An audio spectrum analyzer now Is used for
measurements in the audible frequency spectrum (from
O to 20000 Hz about 10 octaves).
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The proposed digital, real-time audio spectrum
analyzer circuit for audio devices can be connected to
any audio device, asitis:

e Accepting an analogue audio signal as input,

e Digitizing and processing the audio signal using a

DSP,
e Computing the distribution of the audio signal
energy to 20 specific frequency bands, and

e Displaying the energy distribution on a 20x20 LED
display.
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As Is well known there are two measurement methods
INn the frequency domain:

e Vector Analysis and Spectrum Analysis.
e The measurements In the frequency domain that
required complete information (frequency, amplitude,

and phase) about the signal, called vector signal

analysis.

e The other large group of measurements can be made
without knowing the phase relationship among the

sinusoidal components. This type of signal analysis is

called spectrum analysis.
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Our device retrieves complete information about
the signhal frequency, amplitude, and phase and
stores the information in a digital memory.
Consequently is a vector analyzer ?

However, for simplicity, it displays only the

signal amplitude in the frequency domain.

That's why we call it a spectrum analyzer.
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There are two main approaches In order to build a
spectrum analyzer or a vector analyzer:

the Sweep-Tuned Method, and
the Fast Fourier Transform (FFT) method.

For our project, we used the FFET method.

As such, i1t digitizes the time domain signal

and then uses DSP techniques to perform a

Fourier Transform.
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In order to design our spectrum analyzer we needed:

a Digital Signal Processor (DSP),
an Analog to Digital Converter (ADC),
a microcontroller,

Operational amplifiers (Op Amps) and

a Display Unit (DU).
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We have used Microchip Technology’s dsPIC 16-bit
digital signal controllers.

e The type of this powerful silicon device is both a DSP
and a high-performance 16-bit microcontroller in one
package.

So we realized that a dsPIC would be a nice match for
our low-cost design and we chose dsPIC30F6012A
because It has enough 1/0 pins and internal data
memory.

dsPIC30F6012A from among the many dsPICs (it has
enough 1/0 pins and internal data memory).

In addition, dsPIC30F6012A contains a 16-channel, 12-
bit internal ADC that further simplifies the design.
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The first problem we have faced during the design

process was the display. We had to choose between:

« LED Display (low resolution),
e LCD Module (high resolution), and

e Graphics Display (high resolution).

Finally, we chose a LED Display
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The display has 40 LED Dbar | e
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The FFT’s length and the ADC’s sampling frequency are two
crucial parameters In order to perform an efficient
spectrum analysis.

It is well known that:
 The frequency resolution depends on the FFT’s length

and the sampling frequency.
e For an N-point FFT, at a sampling rate SR, the

frequency resolution df is:
_ Sampling Rate
N

df

Additionally,
e The sampling rate also must comply with the Nyquist

sampling theorem

SR > 2" fy ax
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In order to avoid complex anti-aliasing filters (filters
of great order)

e We chose a sampling frequency much greater than
the Nyquist limit, over-sample at 80 kHz and,

e In order to achieve the required 31 Hz resolution N
should be at least 4096.

But a 4096-point FFT cannot be implemented using
our dsPIC in real time (due to memory, speed, and
fractional nature restrictions).
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We used two sampling rates (8 kHz and 80 kHz), two anti-
aliasing filters, and two 256-point FFTs because there is no need
for the 31-Hz resolution at frequencies above 126 Hz.

The 1t FFT can provide the resolution needed for the low

frequencies, while 2"d FFT provides a very good resolution for

frequencies above 1 kHz.

The filters were designed for a signal-to-noise ratio (SNR) better
than the dynamic range (DR) of the spectrum analyzer which is
30 dB. Are quite simple and straightforward because the required
filter order is limited to five (due to the over sampling

Antialiasing filter 1/ 5th-order, 2-kHz cutoff

Frequency resolution
df = 31.2 Hz {31.23 Hz)

Antialiasing filter 1 256 samples
Audio in {Sth order - 2 kHz eut-off)  Sampling frequency = 8 kHz (7996 53 Hz)

Frequency resolution L
df = 312 Hz (340.83 Hz|

Antialiasing filter 2 256 samples
{5th arder - 16 kHz cut-off) Sampling frequency = 80 kHz (B7252.071 Hz)
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 In this figure we can see the

4 x MCP&022

complete design of the Digital
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Anzlog section

Gain adjust

Audio Spectrum Analyzer as a
block diagram.
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|| e Should be noticed that The
dsPIC (dsPIC30F6012A) can
| do both DSP and displaying in

Antialiasing filter 1
(5th order - 2 kHz cut-off)

Display - mode
selectar (0-3)

real time, but 1t cannot drive
the LEDs with the current
needed.

Antialiasing filter 2
(5th order - 16 kHz cut-off)

e Current <600 mA, because are
not powered simultaneously,

but are cycled using scanning  Useéd In order to provide the
technique. required current to the LED

So current drivers should be

display.
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« Additionally implements a frequency analysis technique, which

we call a “20-band parallel analysis filter algorithm using FFT.”
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e Consider the case when a single tone S, of unity magnitude (O
dB) at frequency f, is applied to the input of the device. This tone
will be sampled at a sampling rate SR. This will result in a

sampling sequence S(n, f, SR): S(n, f, SR) = sin 2ﬂfsiR

e In addition, consider a case where you store the first 256
samples of this sequence in memory and apply to them a 256-

point, normalized, 0.5 Hamming window w(n). This results in

w(n) =0.5{0.54 — 0.46 x cos(zn;‘?ﬂ
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e |t IS necessary to use a window function in order to ensure flat-
top filter behavior In the system, according to DSP theory.
Afterwards, we can apply a 256-point FFT (which is actually the
digital version of Fourier’s algorithm) to Y(n, f, SR), resulting in

255

. k
X(l’l, f’ SR) :FFT[Y(H, f, SR):I = ﬁ X ZY(k, f, SR)CIX2nnx256,
k=0

where 1 1s the imaginary unit. 1= +—1 and e = 2.7182 ...

Notice that S(n, f, SR), w(n), and Y(n,f,SR) are real signals,
while X(n, f, SR) i1s a complex signal containing real (Re)
and 1maginary (Im) parts. Computing the square
magnitude of X(n,f,SR) we take P(n,f,SR), which is the
discrete digital representation of the signal energy (or
power) in the frequency domain.

(n, £,SR) = {Re[X(n, £, SR) ]} + {Im[X(n, £, SR)]}
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Next, you define Bar,(f), i.ﬁm_
Bar,(f),...,Bar4(f), el

P(n,f,SR): 4 ool

| 5 |6 |Bas(H

-+
1]

R A 25 X el

Bari(f)

° J, U, v are defined In the
Table according to I.

SRl (799653 HZ) and e - | Freqtj;lncy[Hz}
SR2 (87252.071 Hz) are |mm BarO(f), Barl(f), ..., Barl9(f) are 20

- ] bandpass filters, each one having a
the Samp“ng frequenC|eS central frequency CF(i). The 20 filters

. are overlapping at half-power points (—
For example' 3 dB below peak). Filters 4—9 and 12—

50 .
B 19 are flat-top at —16 dB. Filters O, 1, 2,
Bar 19(f) B k;gP(k, L, SR2) 3, 10, and 11 have 1 dB more loss than

the others.
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o Step 1: Acquire 256 samples of the audio signal at
SR1 =7996.53 Hz sampling rate.

o Step 2: Multiply by a 256-point Hamming window.

o Step 3: Compute the 256-point FFT of the resulting
vector.

o Step 4: Compute the square magnitude vector P with
the resulting vector X.

 Step 5: From vector P, compute BarO, Barl, Bar2,
Bar3, Bar4, Barb5, Bar6, Bar7, Bar8, and Bar9
samples.

» Step 6: Plot each Bar; on the ith LED bar graph.
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The main advantages of the proposed circuit are the
following:

It has low-cost and can be embedded in any audio device,
It uses a simple, low cost 20x20 LED display,

It supports four different display modes,

It provides very good frequency and amplitude

resolution (0.431 octaves from 31 to 15,000Hz and 1.3 db
from O to —28db),

It can be powered from a single 5V power supply,

It offers simultaneous monitoring of the entire audio
signal band in real time,

It uses a single processor for both DSP and display

controlling.
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