
moZo • A Concept for Gastronomic Service Improvement and Optimization

moZo – A Concept for Gastronomic Service
Improvement and Optimization

Eric Gabriel
∗, Michael Ram

†, Henner Nielsen
‡, Helmut Dispert

§

Kiel University of Applied Sciences
Faculty of Computer Science and Electrical Engineering

Abstract

Customer satisfaction is of utmost importance for all types of business. This is especially crucial when
direct contact to the customer is required, as for example in restaurants where a good customerâĂŞwaiter
relation can make the difference. Waiting for service is common and often depends on an unspecified
communication attempt, to get attention for placing order, paying bills, etc. Obviously an optimization of
this work flow is desirable and will have a direct impact on client satisfaction and sales.

In this paper we discuss how this problem can be solved using state-of-the-art wireless microcontroller
technology. The project employs a wireless sensor network as a table-based bidirectional communication
and alert system, allowing the guests to ask for service and to receive a short feedback message. The
presented solution covers the table (desk) devices and an Android application to handle requests, manage
orders, and optimize service. It also includes a server for the system configuration, the communication
between the devices and for showing the restaurant performance.

For maximum flexibility, the desk devices are based on Arduino microcontroller boards and the ZigBee
wireless standard. The server runs on an ARM architecture Raspberry Pi using HTML5, Ajax and
WebSockets for system configuration and service management. The client application supports the Android
4.0+ platform, using a clear and intuitive visual interface.

I. Introduction and Idea

Due to the lack of existing options to call
a waiter/waitress except eye contact
and raising the hand while someone

is in the line of sight, we think that a solution
for this problem is definitely needed. Custo-
mers will save a lot of time and nerves at the
lunch-break and the restaurant might be able
to serve more customers per day, while the
customers will be satisfied with the service.
In addition we want to create an innovative,
easy to use, adaptable and scalable solution
for the restaurant side, which makes the daily
working procedures more comfortable.

The main idea of this project is to create a
user friendly solution for restaurants and their
customers. From the customer side we would

like to extinguish the following problem: The
customer wants to call upon a waiter/waitress
for services, but there is no according person
in the line of sight. Sometimes one has to wait
several minutes for taking an order or paying
the restaurant bill. To eliminate this problem,
we want to implement a communication device
with a button at every table within the accord-
ing restaurant so that the customer might call
a waiter/waitress by clicking the button and
getting a visual response that the service has
been informed and will serve the customer
soon. From the restaurant side we would like
to develop a complete and modern solution for
the billing and the service according to normal
restaurant activities using portable tablets and
a server that acts like a cash register with sev-
eral options for example to adapt the system

∗Eric Gabriel, eric.gabriel@student.fh-kiel.de
†Michael Ram, michael.ram@student.fh-kiel.de
‡Henner Nielsen, henner.nielsen@student.fh-kiel.de
§Helmut Dispert, helmut.dispert@fh-kiel.de

1



moZo • A Concept for Gastronomic Service Improvement and Optimization

Figure 1: Communication Flow of moZo

to different restaurants and viewing what has
been ordered at any existing table.

II. Implementation

II.1 Concept and Communication
Flow

A desk device’s button (1, see Figure 1) is
pressed by a customer when service is desired.
The desk device sends a message with the de-
vice’s serial number, a command and the push
button state. This information is sent via a
wireless ZigBee connection to the receiver ter-
minal (2), which consists of an Arduino Uno
with an attached ZigBee shield. The receiver
terminal splits the received data (serial number,
command and push button state) and sends
this via a serial connection to the server (3). The
server consists of a Raspberry Pi, which runs a
web server with a web interface, a WebSocket
server and a MySQL database. The server pro-
cesses the data, looks up the according table
number of the requesting device’s serial num-

ber in the database and sends the information
via TCP/IP to every portable tablet device (4).
Every tablet device receives this information
and the according table starts to pulsate in a
red color in the Android application.

The tablet device of the employee, who has
confirmed to serve the table, sends an acknowl-
edgement back to the server via TCP/IP. The
server sends a message to all tablets that the
table will be served. The table is now high-
lighted with a green color in every application.
After that the server looks up the ID (MAC-
Address) of the according table in the database
and sends the acknowledgement and the ID via
the serial connection to the receiver terminal.
The terminal sends the acknowledgement via
ZigBee to the according desk device and the
customer gets a visual feedback that this table
is served soon. The momentary push button
stops pulsing and is constantly illuminated.

While taking the orders using the Android
service application, the button illumination of
the served table is automatically switched off.

2



moZo • A Concept for Gastronomic Service Improvement and Optimization

II.2 Hardware

Two independent programs had to be devel-
oped to realize the desk device functions as
well as the terminal functions for these two
individual devices (see Figure 2).

II.2.1 Desk Device

The desk device consists of a microcontroller,
a ZigBee-module (digi xBee) for wireless com-
munication, a battery, a power switch and the
momentary push button for the user input.

In the main loop the program requests the
state of the input button and switches a vari-
able according to its state. To make the system
as flexible as possible we’re using the xBee
modules in API-mode (API=2). This mode en-
ables the modules to use a protocol to transmit
data, meaning, a checksum of the packet is cal-
culated to avoid junk data and every packet
received by the terminal module is confirmed.
It offers several other benefits such as request-
ing several properties and configuration details
of the modules. The system makes use of these
features by requesting its own MAC address
(which is used to address the modules) and
generates a string containing this address as
well as the current state of the system. From the
system’s point of view there are three possible
states: 0 (the initial state, button has not been
pressed), 1 (state when the button is pressed
and pulses the illumination) and 2 (the request
has been acknowledged by the waiter). If the
state of the button is changed by pressing the
button, the system sends the payload contain-
ing the own address and the state of the button
via xBee to the receiver device until it receives

a response that the command is understood
correctly. Once a second the microcontroller
checks whether new packets have arrived or
not. If so, the program analyzes the payload
and reacts by switching the illuminated button
and sending out the corresponding acknowl-
edgement to the server via xBee.

The delivery of each packet is made sure by
the measures mentioned above; firstly, a ran-
dom number between 1 and 1000 microseconds
is used to delay the transmission artificially to
avoid simultaneously arriving packets on the
receiver side. Secondly, this process is repeated
until the xBee module confirms the success-
ful delivery by receiving the information from
the receiving site that the checksum of the re-
ceived packet is correct. And in a third step
the system controls, if a DEVACK is received
within the next three seconds, which indicates
that the whole transmission was successful and
well understood from the counterpart, i.e. the
receiving site.

The device is also able to convert the
input/output strings into hexadecimal num-
bers (necessary for addressing) and back to
string. As mentioned in the description of the
schematic, it is also possible to output detailed
status information of the current connection,
the transmission and several other useful infor-
mation, if it is connected to serial port.

II.2.2 Receiver Device

The counterpart of the desk device is repre-
sented by the server device. Although both
devices share some of the source code (like
for sending/receiving packets using the Zig-

Figure 2: Different types of devices: receiver device (left), desk device (middle) and its debug information (right)

3



moZo • A Concept for Gastronomic Service Improvement and Optimization

Bee module, converting string to hex values
or change parameters of the ZigBee module),
they differ in many ways from each other. The
reason for that is naturally the difference in the
task at hand.

Like the desk device the server device has
available an interrupt function that is executed
every second and listens for new packets. If
new packets are available, the payload con-
taining the string with the address, command
and state of the requesting device is processed
and sub parted. For future applications that
implicate the automated answer of the server
device it is also capable of responding to this
request immediately using the received param-
eters; nevertheless, this feature isn’t used yet.
After processing the string and checking for
correct content it is output to the serial port
and from there further processed to generate
the respective actions and answers.

The server device also listens permanently
on the serial port for incoming strings. If the
length, it’s syntax and the contained command
fulfill the required form (i.e., is whether an
ODACK or a DEVACK), the device constructs
the address from that string, generates a new
xBee-Request and transmits it to the request-
ing desk device, again expecting the respec-
tive answer from it. In default mode the re-
initialization of transmitting a command that
is not responded is the duty of the script ac-
cessing the serial port of the server device – but
as well as the "manual" answers to incoming
requests described above the device is capable
of automating this process as well with just a
few adaptations.

As well as the desk device this device is
also equipped with a second (virtual) serial
port for the wireless communication over the
ZigBee module. In contrary to the desk de-
vice (where the physical port is just used to
output additional information and not neces-
sarily required) this second port at this device
is inevitable since it must communicate as well
to the software module on the server via the
physical connection as to the desk devices wire-
lessly using ZigBee

II.3 Software

II.3.1 Terminal Software

Our terminal is a Rapsberry Pi, which runs
Debian Linux as well as Apache 2.2.22 with
PHP 5.4.4 and PDO support, MySQL 5.5.28
and a node.js server.

Serial Communication
Since the receiving Arduino device is seri-

ally connected to the Raspberry Pi, a script is
needed in order to manage bidirectional serial
communication and to connect with the web
interface as well as to relay in- and outcoming
requests to/from the Android devices. This
script ensures protocol compliance throughout
the attached components.

node.js Server
A node.js server has been created using

the WebSocket technology, that came up with
HTML5. It is possible to create full-duplex,
persistent TCP connections between the clients
and the server. Therefore this technology is the
best solution to offer near-zero latency push
services like it is needed in our application.

The WebSocket server listens for new con-
nections and possibly this connection is ap-
pended to the connection array. Then a mes-
sage event listener is bound to every connec-
tion. In case a message is received the type is
determined. Type 0 messages are broadcasted.
If a message can’t be sent – because of client
connection closures etc. – this connection is
removed from the connection array. Type 1
messages include requests for script execu-
tions. A client can ask the node.js server via a
WebSocket connection to execute a script at a
given path and with given parameters. After
the node.js server has finished this execution
asynchronously the result is delivered to the
requesting client. This means the client can get
any kind of responses such as database queries
or similar operations without the need to open
additional HTTP connections.

Web Interface
The web interface is secured by a username

4



moZo • A Concept for Gastronomic Service Improvement and Optimization

and password login procedure. After success-
ful login one is able to see the actual floor plan
of the restaurant with the accordingly placed
tables. The appearance resembles the Android
application’s view. The web interface has some
similarities to the application like viewing the
actual states of the tables and displaying the or-
ders by clicking on a table, but also some other
administrative settings like changing menu cat-
egories and items in the database. Moreover
it is possible to add picture icons to the dif-
ferent categories. The admin role is able to
change/add a different floor plan (image) to
the interface. This new floor plan is automati-
cally transmitted and displayed at all tablet de-
vices. In addition one is able to add new tables,
place tables and delete tables from the floor
plan. The new table alignment is transmitted
to all tablets and displayed as well. The web
interface can be used to display statistics tables,
which has been fetched out of the database
showing interesting data like:

• What has been sold when and how often?
• How many requests of customers have

been submitted?
• Which waiter/waitress has served the

most?
• How fast have the requests been an-

swered?

II.3.2 Android Application

At the start screen (Restaurant View, Figure 3)
of the application one is able to see the restau-
rant map as a background image, which is
dynamically fetched from the server. There-
fore this map is not fixed and can be changed
using the web interface according to the restau-
rant’s needs. The different tables are also set
to their positions using the web interface, they
appear immediately at every used waiter de-
vice, which is connected to the server. The
table icons are displayed with their respective
table number, their balance and their request
state (no current request, requesting service
or being served). The Android application of-
fers general service functionality such as plac-
ing/deleting orders, which can be managed

by simply touching the table icons. All data is
organized in a central database on the terminal
and can be retrieved by all Andoird devices as
well as the web interface on demand.

III. Discussion

III.1 Strengths

• We designed the whole system to be very
user friendly. Everything is easy to use
and self-explanatory.

• The system is adaptable to almost every
kind of restaurants without self service.
The owner just has to add a specific floor
plan, add the menu items and place the
tables using the web interface.

• The system is an advantage for both sides.
The customer will be satisfied with the
service and the waiter/waitress does not
need to write everything down, remem-
ber the orders, be highly alert if some-
body has a wish, etc. The restaurant man-
ager might as well increase the efficiency
of his service personal.

• The system is very compatible. One
might use any current Android based
tablet or smart phone. It is not neces-
sary to use a Raspberry Pi as terminal.
One might just use a regular computer
instead.

• The system is complete. You do not need
other solutions in the whole cash register
and serving process.

• The system is highly scalable. You can
add as many tablet devices or desk de-
vices as needed.

• If an item runs out of stock it can be eas-
ily disabled in the menu management.
After that it won’t be shown on any of
the devices while it is not available.

• The administrator is able to analyze the
restaurant statistics.

III.2 Weaknesses

• The application display is not able to
zoom at this point of time. Larger restau-
rants which consist of different levels or

5



moZo • A Concept for Gastronomic Service Improvement and Optimization

several huge rooms may have a problem
with the display. As mentioned in the
next chapter "Prospects" this is consid-
ered in the future plan.

• The coordinating script is not an optimal
agent between the Node.js-Server and the
serial connection regarding the commu-
nication timing. The connection between
the tablet device and the Node.js-Server
is not as good as expected. The concept
works theoretically perfect but the tablet
device does not manage this as planned.
This seems to be a problem because the
testing tablet device needs to run an an-
droid modification, which is currently in
an early state and has a few abnormali-
ties.

IV. Conclusion

IV.1 Prospects

• Optimize the software communication by
using a native Android device such as
the Nexus 7, Nexus 10

• Enhancing the project by upgrading each
customer table with an additional tablet,
enabling the customer to access the food
/ beverage database and order from the
tablet without consulting the waiter

• Add functionalities to the web interface
and optimize the interface for the waiters

• Adding a swipe or zoom ability to the
screen view for covering different rooms
or levels in larger restaurants.

• Adding different language support to the
application and the web interface. That
should not be a big deal, because there
are basically only a few single words and
error messages. The menu items can be
added in every possible language by the
admin.

• Extend the functions of the desk devices
by installing non-volatile memory to en-
able the to change configuration details
dynamically

• Redesign the Desk devices, shrink the
overall size and optimize the power con-

sumption which enables them to be inte-
grated in a larger variety of decoration
items.

IV.2 Conclusion

In conclusion we have to mention that our un-
certainty regarding the interaction between the
large amount of different components was in
general overcome relatively fast. All of the
components had no complex problems in the
beginning, only in the detail we had a few dif-
ficulties regarding the communication, whose
are now successfully eliminated.

Since the microcontrollers reach their com-
putational limit our programs had to be opti-
mized in several hindsights for managing ev-
erything according to our needs. Same goes
for the server unit: We had to increase the
performance of the device using several mea-
surements. The core frequency, the SDRAM
frequency and the GPU frequency of the Rasp-
berry Pi was very important for the whole in-
teraction of the system, which is why these
components are massively overclocked. To fur-
ther reduce the access times we also put an
extreme performant SD-Card instead of the
normal class 10 card which is hosting the oper-
ating system.

Nevertheless we managed those difficulties
and developed a system that is complete and
makes successfully use of several different tech-
nologies that are weaved together in a way that
is pretty close to a real world application. Al-
though there are some prospects we would
like to include in the future the whole system
is nearly ready to use in a restaurant.

References

[1] Arduino Software (28.01.2013): Ar-
duino Uno http://arduino.cc/en/Main/

ArduinoBoardUno, last access: 07.02.2013

[2] Arduino Software (27.02.2012): Xbee
Shield http://arduino.cc/en/Main/

ArduinoXbeeShield, last access:
07.02.2013

6

http://arduino.cc/en/Main/ArduinoBoardUno
http://arduino.cc/en/Main/ArduinoBoardUno
http://arduino.cc/en/Main/ArduinoXbeeShield
http://arduino.cc/en/Main/ArduinoXbeeShield


moZo • A Concept for Gastronomic Service Improvement and Optimization

[3] The Pi Hut (Mann Enterprises Ltd):
The Raspberry Pi http://thepihut.

com/pages/the-raspberry-pi, last ac-
cess: 07.02.2013

[4] WebSocket.org: What is WebSocket?

http://www.websocket.org/, last access:
07.02.2013

[5] Android Developers: Get the Android
SDK http://developer.android.com/

sdk/index.html, last access: 07.02.2013

Figure 3: Screenshot of the Android Application

7

http://thepihut.com/pages/the-raspberry-pi
http://thepihut.com/pages/the-raspberry-pi
http://www.websocket.org/
http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/index.html

	Introduction and Idea
	Implementation
	Concept and Communication Flow
	Hardware
	Desk Device
	Receiver Device

	Software
	Terminal Software
	Android Application


	Discussion
	Strengths
	Weaknesses

	Conclusion
	Prospects
	Conclusion


