SoC-based Phase Sensitive Detector for Magnetic Induction Tomography

> Th. Brandt, R. Patz Faculty of Computer Science and Electrical Engineering Institute of Communications Technology and Microelectronics Kiel University of Applied Sciences

Introduction

- Magnetic Induction Tomography (MIT)
- Measurement Problem
- Phase Measurement for MIT
- System-on-Chip
- Results
- Applications

Magnetic Induction Tomography

The MIT Signal

Primary and secondary magnetic fields detected – primary signal Vo, secondary signal ΔV

Electromagnetic Spectrum

Imaging of the electrical properties of objects

Electromagnetic Tomographies

Magnetic Induction Tomography (MIT)

Coils, Non-contact – apply magnetic field, detect magnetic field Measures conductivity σ , permittivity ϵ , permeability μ

A single channel MIT system

The MIT Signal and Phase Precision

From modelling study 1)

Large peripheral stroke- 70m° maximumSmall peripheral- 14m° maximumSmall deep- 4m° maximum

Phase measurement precision required **1m° or better**

¹⁾ "Detection of haemorrhagic cerebral stroke by magnetic induction tomography: FE and TLM numerical modelling ", M. Zolgharni, P.D. Ledger, D.W. Armitage, H. Griffiths and D.S. Holder, 2008 Electrical Impedance Tomography Conference, Dartmouth College, Hanover, USA

Prof. Dr. Ralf Patz

Conductivity of biological tissue

Phase Measurement

At low Frequency

Phase Measurement

Direct conversion

Direct Conversion Systems

Cardiff MkII MIT System

- 12-bit ADC resolution
- 60MS/s Sample rate
- Measurement time: 16ms
- 2²⁰-point DFT implemented in LabView and running on a GPU

Performance:

- < 1m° phase precision @ full-scale input
- 466ms/channel measuring & processing time
 - 400ms transfer time
 - ~50ms processing time (GPU)

FPGA-based Direct Conversion

- Single signal cycle averaging with 12x oversampling
- I/Q demodulation
- I and Q results stored in FIFO buffer

- 14-bit ADC resolution
- 120MS/s Sample rate
- Measurement time: 16ms

Performance:

- < 1m° phase precision @ full-scale input</p>
- 16.6ms/channel measuring & processing time
 - 0.4ms transfer time
 - 167ns processing time (FPGA)

Red Pitaya FPGA Board

System Overview

Sample rate: 125MS/s; Full-scale input: $2V_{pp}$; Bandwidth = 50MHz

Results Phase Precision vs. Signal Amplitude

$$V_{ref} = 1V_{pp}$$
; $V_{signal} = 1mV_{pp} - 1V_{pp}$; $f = 10MHz$; Measurement time = 16,67ms

Prof. Dr. Ralf Patz

Fachhochschule Kiel

Results Phase Precision vs. Frequency

$$V_{ref} = 1V_{pp}$$
; $V_{signal} = 1mV_{pp} - 1V_{pp}$; $f = 10MHz$; Measurement time = 16,67ms

Prof. Dr. Ralf Patz

Fachhochschule Kiel

Comparison

	MkII Digitizer	FPGA-based	Red Pitaya
Sample Rate	60MSps	120MSps	125MSps
ADC Resolution	12-bit	14-bit	14-bit
Acquisition	17.47ms	17.47ms	16.67ms
Phase precision	0.7 – 60m°	0.36 – 342m°	0.16 – 9.5m°
Phase drift	3m°	3.2m°	tbd
Phase linearity	0.9999	0.9999	tbd
Gain stages	1, 6, 30, 120	1	1

Applications

MIT in process monitoring

Multiphase flows Glass production Metal production

Magnetic Induction Spectroscopy

Non-destructive testing of biological tissues

MIT medical applications

Cerebral haemorrhage detection

Non-destructive testing of biological tissues

Cardiff Mk IIa

MIT Systems

Cardiff Mk IIb

Cardiff Mk IIc

Single Channel

SoC-based Phase Sensitive Detector for Magnetic Induction Tomography

> Th. Brandt, R. Patz Faculty of Computer Science and Electrical Engineering Institute of Communications Technology and Microelectronics Kiel University of Applied Sciences