
Secure Copy Protection for Mobile Apps

Nils T. Kannengiesser

Technical University of Munich

Chair for Operating Systems (F13)

Munich, Germany

Nils.Kannengiesser@tum.de

Uwe Baumgarten

Technical University of Munich

Chair for Operating Systems (F13)

Munich, Germany

baumgaru@tum.de

Sejun Song

University of Missouri-Kansas City

Computing and Engineering

Kansas City, USA

sjsong@umkc.edu

Abstract — Copy protection for Android apps exists since the

early days, but even today the existing solutions like Google's

License Verification Library or Amazon's DRM solutions are

proven to be insecure according to our recent analyses. In this

paper we suggest to use secure elements to improve the overall

security and to separate confidential data from the insecurity of

the Android OS. The content is taken from our ongoing research.

Keywords — Apps, Android, Copy Protection, Secure Element

I. INTRODUCTION

“When Google’s first smartphone, the Nexus One, hit the
market in early 2010, nobody could have known whether it
could effectively compete with existing smartphones”[15].
Nowadays Android’s market share is estimated by 85% [1],
and most developers create apps for Android these days, too.
“In comparison to the development of apps for other platforms,
it’s relatively easy to create and upload an app to Google’s App
Market – Google Play.” [15] Instead iOS developers’ apps
have to pass severe testing by the AppStore team and
publishing an app can take several weeks. In 2010 [2] “Google
released the LVL1 […] to satisfy the needs for basic software
protection. Nevertheless this release was immediately cracked
[3]. A major issue with the protection was the reengineering
possibility to change one line of code only, and get an
unlicensed app working [3].” [15] In random app evaluations,
we found that developers are starting to use obfuscation tools
nowadays (e.g. ProGuard2) and many major apps are protected
now. Nevertheless these apps can still “be processed by
reengineering tools (e.g. APKtool3), which produce smali4 or
java output.”[15] The resulting code is much harder to read, but
it is still just a matter of time and attackers may look for known
patterns. Even the “LVL has been updated since its initial
failure,” [15] most implementations are still easy to crack. In a
recent master’s thesis one of our students stated “the LVL is
very popular yet very much broken”[10].

 For instance “Root users can access any part of a phone,
decompile apps as they like and remove or disable security
features. Some manufacturers (e.g. Google) allow rooting by
default. On other phones, there are multiple ways that allow

1 License Verification Library
2 Obfuscation Tool - http://proguard.sourceforge.net/
3 Reengineering Tool - https://code.google.com/p/android-apktool/
4 Smali = Assembly language (output of APKtool)

users to gain root access, too. The timeline for root exploits
(Figure 1) shows that every Android version is affected after
only a few months on the market.” [15] There have been root
exploits in recent times again, too. For instance the
“Towelroot” method by George Hotz [11]. In summary we
found out that none of the existing license verification methods
(cf. Google’s LVL nor Amazon’s Appstore DRM) is really
secure [10][16]. For increasing the security one option could be
to use secure elements to store sensitive data in it. For instance
data examples deserving protection are encryption keys or links
to generate the corresponding OTLs5 [15].

Fig. 1. “Timeline of Root Exploits” (till 2013) [4][15]

5 OTL = One Time Link

II. FOUNDATIONS

“Google began to worry about security early in the
development of Android [5]. Android, itself, enforces security
by separating apps to run as isolated processes with their
unique user- and group-ids. The access to sensitive hardware is
controlled by predefined permissions that need to be accepted
by a user during the initial installation phase [5].” [15]

“To support the security of commercial apps Google released
the License Verification Library (LVL) in 2010 [2]. This
library provides developers with the ability to integrate license
checks in their apps.” [15] Figure 2 shows its implementation:

Fig. 2. “Licence Verification Library” [6] [15]

“Most of the later piracy issues arising from using the License
Verification Library came from how developers used the
library.” [15] Many developers intend to copy unchanged LVL
packages into their apps “without using any obfuscation tools”.
[15] Even Google tries to encourage developers to modify
everything (cf. “the security […] ultimately relies on the design
of your implementation” and “actual enforcement and handling
of the license [...] are up to you” [6]), many applications
include the default, unmodified framework [15]. Even the LVL
uses replies that are signed nowadays [6], our latest research
shows that there are still loopholes to allow successful in-
memory attacks [12].

“A possible way to solve this security issue”[15] is “the usage
of a so called Secure Element. Such an element provides a
secure space that is separated from the smartphone [8] and its
vulnerabilities (cf. Android exploits, rooting, malware like
trojans etc.). For instance, Google is using it as part of their
Google wallet application [7]. Secure elements are available in
form of UICCs6, commonly known as SIM cards, as an
external flash memory card or even already embedded in the
hardware of the phone itself [7]. One of the manufactures for
external secure elements in form of memory cards is Giesecke
and Devrient. Their product, the MSC7, is used in our
research.”[15]

Since modern phones often come without a slot for SD cards, it
was required to look for a different access option. We were

6 Universal Integrated Circuit Card
7 Mobile Security Card by Giesecke & Devrient

able to identify a possible adapter, which allows to connect the
MSC (with its embedded SE) using the provided micro USB
port on most devices.

Fortunately “there is a non-standard possibility to access the SE
over special reads and writes to the file system […] [It]
requires that the card is accessible through the hosts file system
or on a block-level without caching in between (O_DIRECT
required).” [13]

A major problem on most modern Android versions is that they
do not support the unbuffered access (O_DIRECT flag)
anymore (see [14]) and the own written commands are read
back instead of the actual SE’s response. This has been a major
issue for the industry for now and current solutions require a
rooted and modified device [13] to mount an external storage
device (e.g. the MSC) and to add the unbuffered access (kernel
change) again.

III. PROPOSALS

Last year we proposed various ideas at the AmiEs conference,
including the identification of users and devices, the exchange
of information in a secure manner, extended content protection
as well as an obfuscation of the execution [15]. Most of these
ideas require a secure element. Therefore we focused on
solving the existing issues on secure elements first.

“Because it has been relatively easy for users to gain root
access to many different smartphones as well as the history of
such root access exploitation for all kinds of Android versions
and devices, it can be assumed that Android will very likely be
insecure in the future [, too]. Therefore data, which shouldn’t
be accessed by a user (c.f. license information), isn’t stored
securely” [15] at the moment.

“For this reason we focus on design ideas that combine apps
and secure elements. Besides issues involving the storage of
critical data, we also face the problem of identifying a certified
device or user for purposes of copy protection.”[15]

IV. CURRENT SOLUTIONS

Due to the fact that modern devices do not have any SD card
slots quite often, one of the requirements was to use a special
SD card adapter8 via the micro USB interface.

Since mounting an external storage device is not possible
without root rights and due to the afore mentioned issue, the
library “libaums”9 was developed.

The library allows the unbuffered access to any USB storage
device like USB Flash drives/hard drives and SD cards
(connected via an adapter).

Early examinations combining the library with the MSC
framework of Giesecke & Devrient reveal that the access to the

8 e.g. Dash Micro by MeeNova, http://www.meenova.com/
9 “Library to access USB Mass Storage devices”, M. Jahnen,

https://github.com/mjdev/libaums

MSC’s secure element is possible now. It is a workaround for
the O_DIRECT issue (cf. [14]).

V. RELATED WORK

In the recent months there have been no major improvements

and many solutions are still software- or cloud-based, and

therefore vulnerable to software-based attacks or provide less

mobility (cf. cloud solutions are not working in situations

without reception).

“Most related work uses software-based optimizations (e.g.

the kernel modifications in “SEAndroid”10), while other

vendors try to establish security by proposing new hardware

(e.g. TEE11 by Trustonic).” [15] In June 2014 Trustonic and

Thundersoft announced a partnership to bring their technique

to the smartphone market soon [20].

“In terms of copy protection, research papers propose software

related solutions. For instance, a paper by researchers of the

Dankook and KonKuk University suggest using “Class

Separation and Dynamic Loading for Android Applications”

[9]. “ [15] Another paper from 2013 suggests to use

“fingerprinting […] for detecting illegal Apps” [17], which is

similar to the approach of using “forensic marks” and a “self-

checking library” [18]. Other researchers focus on analyzing

and attacking currently used methods by “memory hacking”

[19].

In summary the following methods can be identified “to

prevent illegal execution of Android Apps” [19] for now:

Protection based on/using

 licensing libraries (e.g. Google’s LVL) [6]

 cryptography [19]

 “forensic marks” [18]

 “mandatory access control” [19]

 “Online Execution Class […] a technique that loads

dynamically a part of the class of the entire App code

from the server” [19]

 “Hybrid Design of Online Execution Class and

Encryption-based Copyright Protection” [19]

 secure elements (our approach) [15]

VI. CONCLUSION

Our assumption in getting access to the MSC as well as its
secure element by using the existing USB framework of
Android was successful. It is a major step and strong
requirement for the upcoming verification of all ideas, which
were presented at AmiEs 2013 (see [15] for details).

“We are [still] assuming that the proposed method of using
secure elements (MSC) is going to improve the overall
protection against piracy.” [15]

10 Modified Android version by the NSA
11 Trusted Execution Environment

VII. FUTURE WORK AND PROBLEMS

The next step is to verify our ideas (see [15]) and analyze their
usefulness in terms of copy protection to draw a final
conclusion about the increased security.

A rising issue might be the performance of the secure elements.
We are assuming that not all ideas can be implemented in the
proposed way, since the typical reaction time for a command is
about 110ms for even easy tasks.

Furthermore Android L is presumably already more secure,
because of the usage of the ART runtime. It might become
more difficult for attackers to reengineer apps in general. [10]

REFERENCES

[1] IDC, “Smartphone OS Market Share, Q2 2014”,

http://www.idc.com/prodserv/smartphone-os-market-share.jsp, last
access: 25th August 2014

[2] Red, “Kopierschutz von Android Market geknackt”,
http://derstandard.at/1282273487603/App-Piraterie-Kopierschutz-von-
Android-Market-geknackt, last access: 26th August 2013

[3] Justin Case, “Google’s Android Market License Verification Easily
Corcumvented, Will Not Stop Pirates”,
http://www.androidpolice.com/2010/08/23/exclusive-report-googles-
android-market-license-verification-easily-circumvented-will-not-stop-
pirates/ , last access: 26th August 2013

[4] Janosch Maier, “Enhanced Android Security to prevent Privilege
Escalation”, p.16

[5] Google, “Android Security Overview”,
http://source.android.com/devices/tech/security/index.html, last access:
27th August 2013

[6] Google, “Licensing Overview”,
http://developer.android.com/google/play/licensing/overview.html , last
access: 27th August 2013

[7] Thomas Zefferer, A-SIT, “Secure Elements am Beispiel von Google
Wallet”, http://www.a-
sit.at/pdfs/Technologiebeobachtung/20120428%20Studie_Google_Wall
et.pdf, p.1 , last access: 30th August 2013

[8] Josef Langer, Andreas Dyrer, “Secure Element Development”, p.6,
http://www.nfc-
forum.org/events/oulu_spotlight/2009_09_01_Secure_Element_Program
ming.pdf, last access: 30th August 2013

[9] Youn-Sik Jeong, Jae-Chan Moon, Dongjin Kim, Yeong-Ung Park,
Seong-Je Cho, Minkyu Park, “An Anti-Piracy Mechanism based on
Class Separation and Dynamic Loading for Android Applications”,
RACS ‘12

[10] Marius Muntean, “Improving License Verification in Android”, p. 109

[11] MyCE, “Geohot releases universal Android root exploit – just install an
APK”, http://www.myce.com/news/geohot-releases-universal-android-
root-exploit-just-install-an-apk-71833 , last access: August 25th 2014

[12] Marius Muntean, “Improving License Verification in Android”, p. 54ff

[13] Daniel A., “Seek-For-Android - Details”,
https://code.google.com/p/seek-for-android/wiki/MscSmartcardService ,
last access: September 15th 2014

[14] Google Code, “Issue 67406, O_DIRECT for hardware communication
(microSD-Card) on Android 4.4 not implemented”,
https://code.google.com/p/android/issues/detail?id=67406 , last access:
September 15th 2014

[15] Nils T. Kannengiesser et al., “Secure Copy Protection for Mobile
Apps“, AmiEs 2013 Symposium, Berlin

[16] Marius Muntean, “Improving License Verification in Android”, p. 32

[17] Hyunho Ji, Woochur Kim, “Design of a Mobile Inspector for Detecting
Illegal Android Applications using Fingerprinting”, RACS ‘13

[18] Sanghoon Choi et al., “Android Application’s Copyright Protection
Technology based on Forensic Mark”, RACS ‘12

[19] Ho Kwon Lee et al., “Memory Hacking Analysis in Mobile Devices for
Hybrid Model of Copyright Protecton for Android Apps”, RACS ‘13

[20] Trustonic, “Thundersoft and Trustonic join forces to bring next-
generation security to developing smartphone markets” ,
https://www.trustonic.com/news/release/thundersoft-and-trustonic-join-

forces-to-bring-next-generation-security-to-developing-smartphone-
markets/en, last access: September 21st 2014

