

Automatic Meter Reading in Domestic Environment Using PLC

Smail Menani, Vaasa University of Applied Sciences Smail.menani@vamk.fi

www.puv.fi/en

Content

- Background
- Challenges of the Future Network
- Power Meter Prototype
- The PLC Technology
- Conclusions

The Smart Team

Team	Task
Goos Tom & Serge De Pooter	PLC Network Programming
Pieter Boijen & Chris Menten	DataBase & applications
Sami Paavilainen	Residential Gateway
Marek Kwitek	HMI, user interface
Rachid Daerden, Cédric Devroye & Marek Krajewski	Power Meter
Yenthe Blockx & Sim Jacobs	Integrating the system components

Background: Power System

Power plant, 2: Step-up substation, 3 : Transmission. 4: Step Down Station,
 5 Distribution.
 6: Consumption

Figure Source: http://www.mnpower.com/about_electricity

Traditional Enegy System

Main functions: controls supply and demand process (Updpwn Direction)

Figure source: Joachim Schyer, Remote Control for Smart Grid, 2010

Energy System of the Future (Multi Direction)

Multi-energy sources from both the suply and distribution side

Figure source: Joachim Schyer, Remote Control for Smart Grid, 2010

Challenges of the Future Network

- Efficient Transmission
- Faster Fault location
- Faster Reaction to peaks
- Better Balance
- Protection for distributed grids with decentralised power generation
- Faster Load manipulation
- Managing net flow back into the network (backups)
- ► Interfacing (SA/LV-MV)→Communication
- Managing Carbon emissions
- ..etc

The needs and solutions

But must be implemented into the existing electrical network

Present Grid vs. Future

- Manual restoration of Customers
- One way Communication

🛛 RTU

- Sensors for specific requirements
- □ System failure and outages
- Manual network components diagnostics

Meter for billing

- Complete automated restoration
- Two way communication

🗆 IED

- Sensors installed at strategic network point
- □ Adaptive restoration
- Fully automated and remote interrogation
- □ Smart Meter for complete contol

These are more true at the Distribution Network. Since DN are relatively passive. Transmission Networks already employs high levels of system monitoring and Intelligent Control

The key in DN to be intelligent is the Smart Meter

Automatic Meter: Where we are?

Power Meter: Where we want to go

The Automatic Meter: System Architecture

Automatic Meter: System Overview

VAASAN AMMATTIKORKEAKOULU VASA YRKESHÖGSKOLA UNIVERSITY OF APPLIED SCIENCES

The Power Meter: General Requirements:

Features			
Tariff Item			
Measurement	 The active energy in kWh on # tariff items 1. Voltages and currents per phase 2. Power factor per phase 3. Power per phase 4. The maximum values (power, current) stamped 5. The reactive energy kVArh 6. The duration of any lack of power per phase 		
Electrical Requirements			
	Three phase	Single phase	
Reference Voltage	3x230/400 V	230 V	
Base Current	10 A	5 A	
Maximum Current	60 A	60A	
Accuracy Class	1,0	1,0	
Own consumption	<2 W and 10 VA	<2W and 10VA	
Use from current circuit	2.5 VA	2.5VA	
Resistance to shock waves	6KV (Diff Mode)	1.5KV (Circuit Low)	
Resistance to lighting	8KV		
Dielectric Strength	4KV		
Resistance to RF EM field	80MHZ-1000 MHz		
	Weather conditions:		
Nominal operating	range: -10 $^{\circ}$ C to + 60 $^{\circ}$ C;		
Operating range limit: -	25 ° C to +65 ° C;		
Storage temperature	-25 ° C to + 70 ° C;		
Relative humidity	40 °C: 90%		

Power Meter: Structure of the Meter Prototype

Figure 3: Simplified Circuit Diagram of a Power meter

RREAKOULU DLA IED SCIENCES

Meter: Voltage Front end Circuit (VFC)

- 1. Step down with voltage divider circuit to 1 Vpp
- 2. Apply the conditioned signal to the ADC channel of the microcontroller

Current Front-end Circuit (CFC).

- 1. Use a step down CT: $Is = Ip.\frac{Np}{Ns}$
- 2. Use **resistors** to convert Current to Voltage (Because of the ADC): $R = \frac{U}{r}$
- 3. Use voltage amplifier with variable gain to be able to measure small range of currents (This allow higher resolution ADC)
- 4. Use the **CD4066BCN controlled switch** to allow automatic setting of the gain

Other Circuits: The RS232 interface

An RS232 channel is required to connect the Power Meter to other devices:

1. The MAX232 chip is used to build the HW interface between the USART of the microcontroller and the RS232 com port of a PC

Other Circuits: The USB interface

An USB channel is also required to connect the Meter to other devices that uses USB protocol:

1. The MCP2200 chip is used to build the HW interface between the USART of the microcontroller and any device that uses a USB protocol

Other Circuits: The Galvanic Isolation

An USB channel is also required to connect the Meter to other devices that uses USB protocol:

1. The IL712 and IL 717 chips to isolate the Meter signals from the LV grid. These chips can isolate up to 3KV.

The Power meter Circuit diagram

VAASAN AMMATTIKORKEAKOULU VASA YRKESHÖGSKOLA UNIVERSITY OF APPLIED SCIENCES

Power Meter: Bread Board Prototype

Power Meter: PCB

Power Meter: Final Prototype

Power Meter: The firmware

The main function of the firmware is to:

- Manage the measured data (Data Acquisition)
- Process the measured data
- Display and monitor the measured data

The most important function of the program is the ISR (Interrupt Service Routine): The ISR, reads, processes and cumulates sampled data and then returns the results to the main program. The ISR is called every time the ADC is completed:

```
ISR(ADC_vect)
{
    signed int TempI;
    signed long TempL;
    PORTB=(PINB&DIRB)|DUTY; // For duty cycle monitoring
    Sample[Index].Previous=Sample[Index].Fresh; // x[n+1] <- x[n]
    if (0==Index) // x[n] <- DATA
    Sample[Index].Fresh=ADC; // save voltage sample as it is
    else
    Sample[Index].Fresh=(0x03FF-ADC); // save inverted to current sample
}</pre>
```

There other functions such as data filtering, gain control, ..etc.

Program overview: Flowchart

Program: Overview

Steps	Description	
1	Checking the MCUSR (Micro Controller Unit Status Register).	
2	initializing the registers: ACSR; CSR; BRR; TCCR; OCR; TIMSK; ADMUX; ADCSRA	
3	Calibration	
4	Determine the gain of the amplifiers	
6	Measurement and Data filtering	
7	Compute the power	
8	Display and Monitor	

PLC (Power Line Carrier): Principal

Figure Source = Ulrich Bjere. The PLC Technology

- AFE (Analog Front End) \rightarrow Filtering and coupling to the power grid
- Physical & MAC Layer ->
- →Communication to the PLC media
- → Modulation:
 - FSk: Frequency Shift Keying
 - DCSK: Differential Code Shift Keying (Renesas: Ytran Pantent)
 - BPSK: Binary Phase Shift Keying (Echelon)

• ...

Communication between external CPU

PLC: principle

The **IT800D** is a Power Line Communication modem used in the **Renesas Run M modules**. The IT800D chips are responsible for the data link layer as well as for the physical layer.

PLC (Power Line Carrier)

RUN-M: RENESAS Ubiquitous Network Layer for Metering Applications.

- Intelligent join procedure and self healing.
- Dynamic reconfiguration
- Intelligent Repeating mechanism

RUN-M Network Structure

The features of the RUN-M network are described as follows:

- \checkmark Tree network structure
- \checkmark Up to 7 levels tree depth
- \checkmark Up to 255 nodes in each level
- ✓ Allows 1785 network participants
- ✓ Network is controlled by a main device (Concentrator)
- \checkmark Concentrator is the only device located on level 0

Multiple Message Types

- Unicast: Message to a particular node
- Levelcast: Message to all nodes on a particular level
- Multicast: Message to entire network

Development Environment for Automatic Meter

Developement Environment for AM

Concentrator set up

Functions added to the AM System

- RTC (Real Time Clock): To be used in every application that require date
- Send auto-request: Use RTC to request data from each node at regular period of the day/week/month/year
- Send auto-response: Similar to the request function, but with options to select which data will be sent.
- Tariff: Set the price per kWh
- Send messages: Send messages to selected node
- High usage Alarm: When customers uses more energy than predicted, the data concentrator sends a warning
- Store data of a node: The concentrator stores data temporary before sending to database
- Ping a node: To describes the status of the nodes
- UMI

In Red: not implemented yet

DSN: 0x00000000 Network Id: 0x0142		
<pre>1 - Basic device set up 2 - Send data to a node 3 - Send a leave request to a node 4 - Send a force leave 5 - Send a line quality request to a node 6 - Print child table 7 - Warm start 8 - Cold start 9 - Cold start and reset of all parameters 10 - Set the number of max. accepted children</pre>		
11 - Get management table value 12 - Set management table value 13 - Remote get management table value 14 - Remote set management table value		
15 - Send new tariff 16 - Send CNC message 17 - View time 18 - Set time 19 - Send message		

NES (Network Energy Service)

Back-end applications

Priority	Description	Dependencies
	Data export & import.	Communications (TCP/IP, USB)
	Instant kWh view.	Current power reading
	A live view of energy usage expressed in kWh.	Memory access (for storing readings)
	Daily/Weekly/Monthly/Yearly view.	Memory access (retrieval of readings)
	A historic view of average energy usage.	
	User input screen for settings regarding cost of	Input (buttons)
	energy (what prices at what times) and usage	Memory access (saving/retrieval settings)
	alarm threshold.	
	High use warning alarm	Current power reading
		Access to settings
		Communications (optional)
	Instant Cents/hr. view	Instant kWh view
		Input
		Access to settings
	Usage graph.	Daily/Weekly view
		Access to memory
	Remote interfaces	TCP/IP Communications

Conclusion

Figure source: Zoran Kajic, ABB Power Technologies AB

