

Evaluating the use of GSR sensors for tetraplegic patients

Margarida Urbano, ESTGA, Universidade de Aveiro, murbano@ua.pt

José Alberto Fonseca, DETI, Universidade de Aveiro, jaf@ua.pt

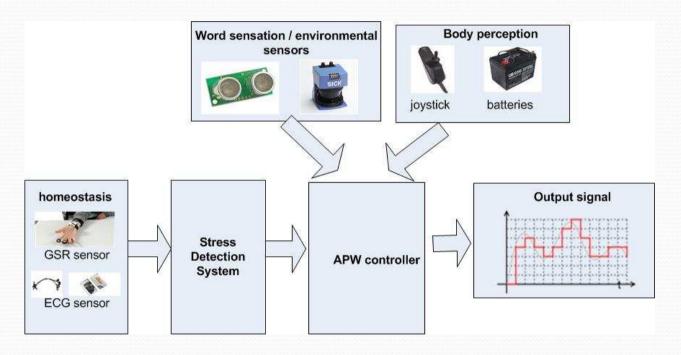
Pedro Gordo, Centro de Reabilitação do Centro - Rovisco Pais

Rui Costa, ESSUA, Universidade de Aveiro,

Paulo Simão, Instituto de Telecomunicações / Universidade de Aveiro

Motivation

- > Tetraplegic patients need a commercial powered wheelchair (CPW).
- > Centro de Medicina e Reabilitação Região Centro-Rovisco Pais (CMRRC-RP) is the major rehabilitation center in the north of Portugal.
- > In collaboration with the Center we are adapting a CPW for people without enough strength to operate the joystick.
- > The preliminary work was performed using the Stage simulator and tested by real patients.
- > We verified that the patients learned well the mode of operation but, after some time, started to be tired, nervous, and begun to fail.
- > The patients are exposed to a significant stress level, due to their limited physical abilities.

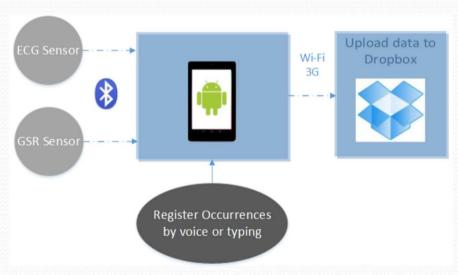


Solution

- The psychic condition affects and is affected by the way the wheelchairs users interact with their wheelchair.
- ➤So, the control system used in the wheelchair must have the capacity of:
 - > processing sensors' data, in real time,
 - > reacting on unknown environmental situations and
 - > reacting to the eventual changes of the wheelchair user's welfare.
- >According to these attributes, our adapted wheelchair is considered as an embodied autonomous agent.
- ➤In this work, the plan is to introduced the user's physiological state in the APW control unit.
- The goal is to estimate the patients' emotional / comfort state and use this knowledge to assiste in the navigation of the wheelchair.

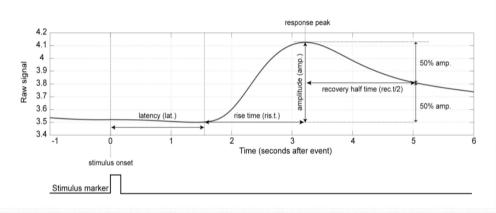
The hardware configuration

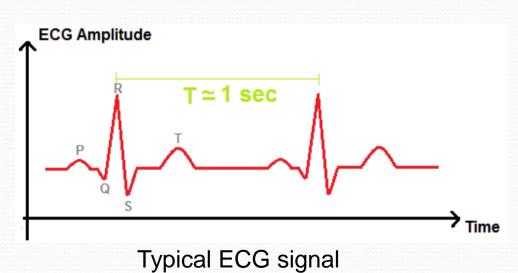
- A stress detection system can provide a solution to avoid situations where the stress can be harmful, like wheelchair or vehicular navigation, avoiding possible accidents.
- ➤ APW Adapted Powered Wheelchair



Stress Detection System

- ➤ The stress detection system developed is a non-invasive wireless system capable of:
 - acquiring simultaneously cardiac changes (ECG) and the galvanic skin response (GSR) signal.
 - register, in a friendly way, occurrences which can lead to changes in the stress level of the persons under observation.
 - send all acquired data to a database.
 - memorizing all user emotional profiles in a database.


Sensors Application and signals


GSR sensor application

ECG sensor application

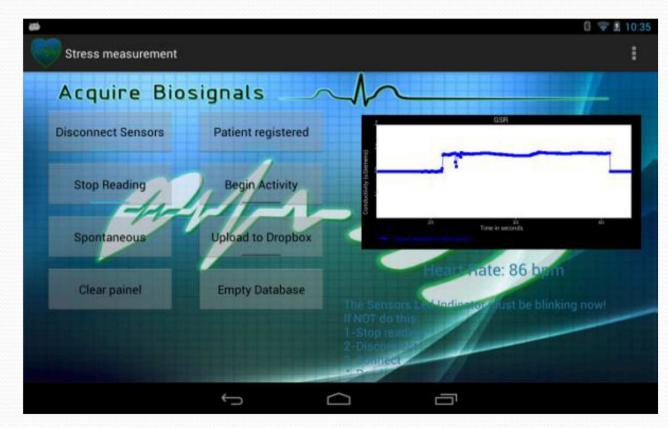
Typical GSR signal: stimulus and peak

Centro de Medicina de Reabilitação da Região Centro- Rovisco Pais (CMRRC_RP)

- Is a centre of rehabilitation for disabled persons, most of them with a spinal cord injury (SCI).
- The clinicians of this centre are not only concerned with the rehabilitation but also with the adaptation of the patients to their new way of life: patients are trained to use adapted facilities and assistive devices.
- They have accepted and allowed that this study could be made with their patients.

Patient Experimental Test Protocol

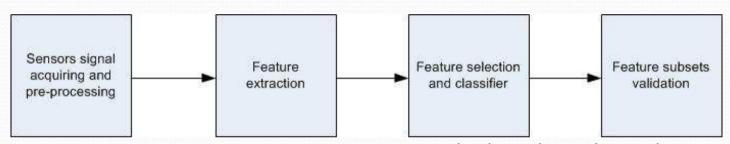
- 1. Staying 5 minutes in rest.
- 2. Navigating the wheelchair along a corridor 5 minutes.
- 3. Navigating the wheelchair 10 minutes:
 - inside a dinning room, bypassing tables, chairs.
 - driving parallel to a wall.
 - > entering and exiting an lift.
- 4. Navigating the wheelchair along a corridor.
- 5. Staying 5 minutes in rest.



Stress measurement Android Aplication

During the experimental test:

- Acquires simultaneously cardiac changes and the galvanic skin response.
- Someone registers the occurrences.



Feature selection

Steps to recognize emotion with physiological signals.

The offline feature extraction of ECG and GSR biosignals is done in a MatLab interface specifically developed.

Mean HR (bpm)

Maximum HR (bpm)

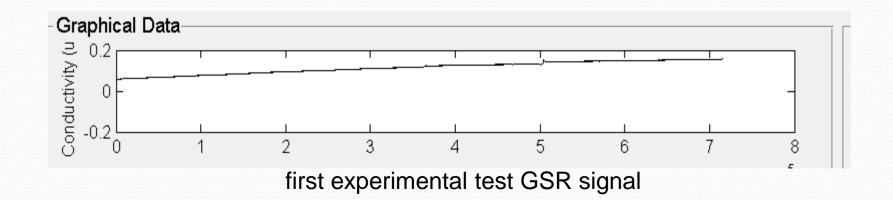
Minimum HR (bpm)

Mean Conductivity (μS)

Maximum Conductivity (μS)

Minimum Conductivity (μS)

Number Peaks Detected


Mean Peaks Amplitude (μS)

Mean Peaks Rising Time (s)

Prelimary results

- After the first experimental test (with a C₃/C₄ patient), it was decided to apply, in future, the GSR electrodes on the forehead
- This decision was based in the type of the GSR signal acquired: it is different from the GSR signal of a person without deficiency: does not show peaks.

Prelimary results

- This can have different reasons:
 - one of the symptoms of this injury is the failure of the sweating function, i.e., patients can not sweat below the level of injury, and some even above.
 - As the patient in the test has three years of experience in navigating his wheelchair, he does it very well without any kind of emotional change.
- Although the GSR signal has no peaks, its instantaneous value increases as the test is advancing.

Prelimary results

- Two more experimental tests were made with the GSR electrodes apllied in the forehead:
 - patient 2 was a C₃/C₄ with one month of experience in the navigation of his powered wheelchair
 - patient 3 was a C5 with less of one month of experience in the navigation of her powered wheelchair.
- The GSR signal has the same behavior as the previous one.

Conclusions and work in progress

- ➤ We proposed to incorporate a set of additional sensors in the wheelchair controller, deriving environmental and homeostatic states.
- The stress detection system informs the APW controller of the user emotional state.
- ➤ The GSR features selected, when dealing with tetraplegic patients must be different from those selected when dealing with patients with no deficiency.
- ➤ More experimental tests will be made as also a user profile will be created based in the implementation of different classification algorithms.
- A new version of the stress measurement application will be developed trying to predict the user different emotional states for the case of these patients.