
Mechatronics and Embedded 

Software @ KU Leuven 

Oostende/Brugge

prof. dr. ing. Boydens Jeroen

24/09/2015 AmiEs-2015
Ambient Intelligence and Embedded Systems

KU Leuven Technologiecampus Oostende
‘Techniek die werkt’



24/09/2015 AmiEs-2015

abstract
• Mechatronics is concerned with the development of as well intelligent 

production lines as intelligent products. In our current society they take 
an ever more increasing role as these systems can be found 
anywhere. Ranging from home environments such as digital cameras, 
to industrial environments such as smart agriculture machines. 

• The software part of these Cyber Physical Systems is becoming more 
important as more and more components are programmable. This talk 
will focus on software engineering strategies that support the 
development of embedded software for CPS’s. Focusing on current 
research in agile methodologies such as test-driven development and 
techniques to build resilient embedded software. This resilience copes 
with disturbances in software leading to dataflow or control flow errors. 
This resilience is positioned in relation to functional safety standards to 
which these systems must adhere.



Test-Driven Development 
of embedded software



24/09/2015 AmiEs-2015

Problem statement

4

Two trends influence the way embedded software is developed

1) Embedded system level: 
Embedded software plays a more important role

2) Global level:
Embedded systems are becoming more pervasive in our 
lives (even in critical domains)

• Consumer electronics
• Automotive / transportation
• Medical applications

Risk = Importance x Chance of failure

12



24/09/2015 AmiEs-2015

Embedded quality assurance

5

Quality assurance in embedded software development 
is mostly limited to debugging and final testing, only 

focusing on the current issue…

Embedded software testing gap

Importance versus state of testing



24/09/2015 AmiEs-2015

Automated testing

6

1. Find bugs early
2. Measurable quality
3. Increasing confidence
4. Detecting regression
5. Encapsulating third party 

code

Timely detection of bugs by automated testing
 Running test suite frequently during development
 Incrementally expanding the test suite
 Support from unit testing framework



24/09/2015 AmiEs-2015

Test-Driven Development

7

TDD cycle

1. Write failing test (red)
• New behavior
• Minimal skeleton to get through compilation

2. Write code to pass test (green)
• Minimal implementation

3. Refactor 
• No new behavior
• Clean code
• Keep tests passing



24/09/2015 AmiEs-2015

Test-Driven Development

8

Advantages
1. Code is tested while it’s written
2. Fast feedback cycle
3. Extensive & safe refactoring
4. Focus on current functionality
5. Tests become living documentation

Disadvantages
1. 2x code 

increase development time



24/09/2015 AmiEs-2015

Embedded constraints

9

↔ Embedded TDD challenges

1. Limit the memory footprint needed for TDD on target 
hardware

2. Tests for 
1. Hardware independent code
2. Hardware aware code
3. Hardware specific code

3. Maintain a fast programming cycle



24/09/2015 AmiEs-2015

TDD strategies for embedded

10

Test on target Test on host Remote testing

{C;}
{C++;}

{C;}
{C++;}

{C;}
{C++;}

/



24/09/2015 AmiEs-2015

TDD4ES strategy evaluation

11

---
Test & Program 

on target

+++
Test & Program

on host

+/-
Broker on target 

+++
Real drivers

---
Only virtual 

drivers

+++
Real drivers

---
Frequent flash
programming

+++
Development 
limited to host

-
Frequent flash
programming*

Resources

Slow

Test on hostTest on target Remote testing

Dependency

/{C;}
{C++;}



Embedded Software 
Resilience



24/09/2015 AmiEs-2015

Introduction
• Embedded systems are used more and more:

o Home appliances
o Avionics
o Railway
o Automotive
o Medical
o …

• Function can be grouped in two main categories
1. Safety-critical: system can decide life or death
2. Non-safety-critical: e.g. infotainment systems

13



24/09/2015 AmiEs-2015

Safety-critical 
• Safety-critical products must comply with a standard

IEC 61508
Basic Standard

Medical

IEC 60601
General

IEC 62304
Software

Railway

EN 50126
General / RAMS

EN 50128
Software

EN 50129
System Safety

Automotive

ISO 26262
General

14



24/09/2015 AmiEs-2015

Functional Safety: IEC 61508
• The standard addresses two types of failures:

1. Systematic Failures = design failures: these failures are 
addressed by imposing the Safety Life-Cycle.

• The Safety Life-Cycle defines a number of steps, which must be 
followed, documented and verified to develop a compliant 
product. 

2. Random Hardware Failures: these failures are 
quantified and categorized

15



24/09/2015 AmiEs-2015

Functional Safety: IEC 61508
• Once all HW failure rates are known, a product can be 

given a Safety Integrity Level (SIL)
o High demand = functioning more than 1 p.a.

e.g. car brakes
o Low demand = functioning less than 1 p.a.

e.g. car airbag

16



24/09/2015 AmiEs-2015

Problem: soft error

17

• A soft error is a 
disturbance on hardware 
level, caused by external 
factors.

• That disturbance 
translates to a bit-flip that 
corrupts memory.

• That corruption can affect 
the executing software 
and cause a system 
crash.



24/09/2015 AmiEs-2015

Cost Efficient Detection
Soft Error Detection

Hardware-based Software-based
How Add components to the PCB 

so radiation is blocked
Add a detection and recovery 

scheme
E.g. Add shield Implement Signature 

Monitoring
Cost Constant extra cost per 

product

One-time cost only. Same
software can be applied to 

each product

18



24/09/2015 AmiEs-2015

Protecting against Soft Errors: Overview
• The system can be protected against Soft Errors by 

Software Implemented Fault Tolerance (SWIFT)

SWIFT

Detection scheme
+

Recovery scheme

Detection
+

Recovery scheme

Detection Recovery Diverse 
programming 

Automatic detection 
and recovery of CFE

Data Control 
Flow

 Duplication and 
comparison

 Defensive 
programming

 Global execution flag
 SIED
 RSCFC
 ECCA
 YACCA
 SEDSR

 Checkpointing  N‐version with voter
 Recovery block
 Hybrid forms

 ACCE(D)
 CFEDR

19

and



24/09/2015 AmiEs-2015

Data flow error detection
• Corruption of input, intermediary and output values must 

be detected.
• This can be done via

o Duplication and comparison: 
• Values are calculated multiple times and compared to each other.
• Can be executed at different levels:

• Variable and Parameter
• Function…

o Defensive programming: 
• Inputs and outputs of functions are submitted to reasonability 

checks
• Pre- and postconditions

20



24/09/2015 AmiEs-2015

Control flow error detection
• Control Flow Errors (CFE) corrupt the execution order of 

the program.
o Skip instructions
o Re-execute instructions
o Take wrong branch…

• To detect CFEs, the correct control flow of the program 
must be known. 
1. Divide program in Basic Blocks
2. Construct the Control Flow Graph (CFG)

21



24/09/2015 AmiEs-2015

Validating the detection
• No matter what detection technique is used, once 

implemented it must be evaluated for its detection 
capability.

• Validating the detection technique means soft errors have 
to occur in the system. This can be arranged via fault 
injection.

• Fault Injection is, as the name indicates, the process of 
injecting, introducing soft errors in a system.

22



Case Study: Fault Tolerant Pick and Place 
Robot
• Parts:

o Lynxmotion AL5B
5 servo motors fully 
control the arm.

o MBED NXP LPC1768
the microcontroller, 
driven by Cortex-M3.

o APDS-9960
color, proximity and 
gesture sensor 

23



Safety Life-Cycle
• The Safety Life-Cycle is a 

development process 
imposed by IEC 61508 to 
address Systematic 
Failures. 

Concept

Hazard and Risk analysis

Safety requirements

Planning and Realization

Installation, 
commissioning

Operation, maintenance, 
repair

Modification

Decommissioning
D

oc
um

en
ta

tio
n

Fu
nc

tio
na

l S
af

et
y 

as
se

ss
m

en
t

V
er

ifi
ca

tio
n

24



24/09/2015 AmiEs-2015

Safety Integrity Level (SIL)

25

• Once a function or system is developed and all protective 
measures have been implemented, it will have a failure 
rate.

• IEC 61508 uses SIL to express excellence, using the final 
failure rate. The range of failure rates is divided into four 
ranges. The higher the SIL the more stringent the 
requirements to meet that level.

SIL Probability of dangerous failure per hour
(High demand or Continuous operation)

Probability of failure on demand
(low demand operation)

4  10ିଽ to ൏ 10ି଼  10ିହ to ൏ 10ିସ

3  10ି଼ to ൏ 10ି  10ିସ to ൏ 10ିଷ

2  10ି to ൏ 10ି  10ିଷ to ൏ 10ିଶ

1  10ି to ൏ 10ିହ  10ିଶ to ൏ 10ିଵ



EN 50128/50129

EN 50129 (System Safety)

Safety
Integrity 

Level

Tolerable Hazard Rate 
(THR), per hour, per 

function
4 10-9 ≤ THR < 10-8

3 10-8 ≤ THR < 10-7

2 10-7 ≤ THR < 10-6

1 10-6 ≤ THR < 10-5

EN 50128 (Software)

Software 
Safety Integrity 

Level (SSIL)

Description of 
Safety Integrity

4 Very High
3 High
2 Medium
1 Low
0 Non-Safety Related

26

• The SSIL is required to be at least the same as the 
system SIL

Minimum 
required


