

R&D PROJECTS @ EMBEDDED SYSTEMS RESEARCH GROUP CAMPUS DE NAYER

Patrick Pelgrims

AmiEs-2015, 24-26 September @ Vives UC, Ostend, Belgium

EMBEDDED SYSTEMS RESEARCH TEAM

- Coordinator:
 - Patrick Pelgrims
- Members

2

- Wim Dams
- Jan Derua
- Marc Roggemans
- Marc Scheirs
- Lars Struyf
- Bart Tanghe
- Johan Van Bauwel
- Dirk Van Merode
- Jurre De Weerdt
- Sofie Beerens

Mail: first.last@thomasmore.be Tel: 015/31.69.44

AmiEs-2015 @ Vives UC, Ostend, Belgium

- As a research group specialized in embedded systems, our goal is to build and use our expertise in the development of state-of-the-art digital, analog and software systems, both for the industry and in support of the Electronics-ICT curriculum.
- Development happens from design to realization as proof-of-concepts, demonstrators, industrial cases or prototypes.

SOME EMSYS - PARTNERS

AmiEs-2015 @ Vives UC, Ostend, Belgium

4

TARGET MARKETS AND APPLICATION EXAMPLES

Wheatstone brid 1 active strain gaug

AmiEs-2015 @ Vives UC, Ostend, Belgium

5

CURRENT PROJECTS

- Industrial oriented projects
 - USB-Ethernet, Ethernet-DMX
 - KNX
 - Pick & Place
 - Pico Satellite
 - Etc...

6

- KIT1, XC888
- Raspberry
- FPGA, ZYNQ
- Elektor etc...

AmiEs-2015 @ Vives UC, Ostend, Belgium

CURRENT BIOMEDICAL PROJECTS

- Instrumentation for orthopedic applications (PWO INS-OT)
 - Embedded orthese pressure sensing and logging system
 - Implantable Knee angle measurement system
- Instrumentation for biomedical applications
 - Orthopedic instrumentation and measurement system
 - Sensor design (MICAS ESAT)
 - Synergy between University MICAS ESAT KU Leuven and Thomas More UC

as

ΜΟΒΙΔΑΒ

THOMAS

PWO INS-OT

EmSys develops and realize analog, digital and software systems for different application domains based upon:

- FPGA

8

- PCB
- Microcontrollers S
 - Sensors
- Microprocessors
- Embedded OS
- Embedded Software Communication

MOBILAB uses *off-the-shelf* sensors and measurement systems but they are expensive, not always mobile and have limitations like:

- Size

- Power

- Resolution
- Open interface
- AccuracySynchronization
- Multi purpose

AmiEs-2015 @ Vives UC, Ostend, Belgium

ISYS EMBEDDED SYSTEMS TECHNOLOGY @THOMAS MORE

PWO INS-OT CASES

9

PROSTHESIS SYSTEM SPECIFICATIONS

• Lower leg prosthesis

10

Orthese Socket	Max. Sens. area.	Measurement range	Precision	Sample Frequency	Number of sensors	Sync.
High end pressure	10x10mm	0psi tot 50psi	<2%	5 tot 200Hz	N x 16	Coda MOTION.
High end temperature.	10x10mm	10°C tot 50°C	0,1°C	5 tot 200Hz	N x 16	Coda MOTION.
Low end pressure	10x10mm	Opsi tot 30psi	<10%	50Hz	16	RF
Low end temperature	10x10mm	10°C tot 50°C	<10%	50Hz	10	RF

THOMAS

RC

AmiEs-2015 @ Vives UC, Ostend, Belgium

EXISTING AND EXPENSIVE SOLUTION

AmiEs-2015 @ Vives UC, Ostend, Belgium

11

THOMAS

२(-

INS-OT: PROPOSED SENSOR USAGE

• 'FlexiForce ™' sensor based

12

STANDARD FLEXIFORCE SENSOR (MODEL A201)

Thickness	0.008 (0.208 mm)				
Length	8" (203 mm) 6" (152 mm) 4" (102 mm) 2" (51 mm)				
Width	0.55" (14 mm)				
Sensing Area	0.375" (9.53 mm) diameter				
Connector 3-pin male square pin (center pin is inactive)					
Force Ranges	0-1 lb (4.4 N) 0-25 lbs (110 N) 0-100 lbs (440 N)*				
Operating Temperature Range	15°F to 140°F (-9°C to 60°C)				
Linearity (Error)	+/- 3%				
Repeatability	+/- 2.5% of full scale (conditioned sensor, 80% force applied)				
Hysteresis	<4.5% of full scale (conditioned sensor, 80% force applied)				
Drift <pre><5% per logarithmic time scale (constant load of 90% sensor ratin</pre>					
Response Time	<5 microseconds				
Output Change/Degree F	Up to 0.2% (~0.36% / °C). Loads <10 lbs, operating temperature can be increased to 165°F (74°C).				

THOMAS

-

AmiEs-2015 @ Vives UC, Ostend, Belgium

REQUIRED SYSTEM SPECIFICATIONS

• Knee angel measurement

13

Knee Implant	Max. Sens. Area.	Measurement	Resolution	Sample Frequency	Cabling	Sync.
High end	Integrated in the knee	f/e, v/v	Angle better than 2°	5 tot 200Hz	in knee spacer	Coda MOTION
Low end	Integrated in the knee	f/e, v/v	f/e: 5°, v/v: 2°	50Hz	in knee spacer	RF

AmiEs-2015 @ Vives UC, Ostend, Belgium

THOMAS

KNEE ANGLE MEASUREMENT CONCEPT

AmiEs-2015 @ Vives UC, Ostend, Belgium

14

INS-OT PROPOSED SOLUTION (ARAMI)

- Prototype principle based on 'Magnetism'
- C.O.T.S. solution in stead of multiple ASIC !

TARGET DEVICES: ORTHESE & E-KNEE

Requirement and Specifications for Logger

- Resistive pressure sensors
- 16 channels individual configurable
- Sampling rate up to 200Hz
- Resolution better than 8 bit (e.g. Tekscan [™])
- Lifetime exclusive RF 24h
- Local data storage (USB Stick up to 32GB)
- USB and wireless interface

16

Requirement and Specifications for E-Knee

- Knee with build in strong magnet(s)
- 6 magnetic sensors
- Sampling rate up to 200Hz
- Resolution better than 16bit
- Targeting inductive powering (communication)
- No local data storage
- Integrated wireless interface

AmiEs-2015 @ Vives UC, Ostend, Belgium

ORTHESE: AFE PROTOTYPE VALIDATION

AmiEs-2015 @ Vives UC, Ostend, Belgium

17

ORTHESE: 16 CHANNEL AFE

- 16 Channel time multiplexing prototype
- 1/16 current consumption !
- Total current consumption less then1.5mA @3.3V
- AFE on-board data handling and processing
- Miniaturized design for patient comfort
 - Ultra fine pitch BGA
 - 100µm technology (limit PCB size and manufacturing cost)
 - Ultra small drill hole technology (200µm diameter)
 - Li-ion battery based

18

- Ultra Low Power (ULP) analog and digital circuitry
- Realized AFE size: 20mmx24mm (Incl. μC)

THOMAS

ORTHESE: 16 CHANNEL AFE SCHEMA

AmiEs-2015 @ Vives UC, Ostend, Belgium

19

ORTHESE: AFE 16CHANNELS PROTOTYPE

ORTHESE: AFE PROTOTYPE SIGNALS

21

THOMAS

R-

ORTHESE: AFE IN ACTION

22

ORTHESE: MAIN LOGGER FEATURES

- Power circuitries for: USB, μC , AFE, RF
- Microchip PIC32 based system
- SPI+ for AFE data handling and configuration
- Real Time Clock and Calendar function
- Up to 5 external input for e.g. synchronization
- USB HOST (MSD or other USB to ... devices)
- USB Slave (configuration and software update)
- Onboard Microchip Li-Ion Battery manager
- RF communication SPI NRF24L01+ module
- User interface (buttons, e-paper LCD,...)

THOMAS

ORTHESE: LOGGER SCHEMATIC

AmiEs-2015 @ Vives UC, Ostend, Belgium

24

ORTHESE: LOGGER & DUMMY AFE

25

ORTHESE: FUNCTIONAL CONCEPT

ORTHESE: FUNCTIONAL PROTOTYPE

S/N AND REAL TIME MEASUREMENTS

AmiEs-2015 @ Vives UC, Ostend, Belgium

28

ORTHESE: N*16 CHANNEL DESIGN

AmiEs-2015 @ Vives UC, Ostend, Belgium

ORTHESE: NEW STM32 BASED DESIGN

30

KNEE: CONCEPT & FEATURES

- 3 dual analog/digital channel magneto sensors
- 6 Channel synchronous sampling
- Programmable gain
- Software/hardware SPI
- Modular design to migrate design
- Onboard ULP μC
- Onboard processing (Magnetics to angle calculation)
- External RF communication module
- Total current consumption
 - 7..12mA with analog sensors
 - Less than 5 mA with digital sensors
- Prototype same size as HDPE block
- Inductive powering and communication with C.O.T.S.

THOMAS

KNEE: CONCEPT PROTOTYPE V1.0

KNEE CONCEPT/PROTOTYPE IN ACTION

KNEE: CAD AND PCB PROTOTYPE V2.0

INDUCTIVE POWERED PROTOTYPE V3.0

KNEE: INTEGRATION AND TESTING

Integrated PCB Flexible E-Knee test system

AmiEs-2015 @ Vives UC, Ostend, Belgium

36

LINK WITH EDUCATION 2015-2016

- International Bachelor & Master thesis subjects
 - Embedded STM32 based wireless orthese logger
 - 64 channel ERZ32 based wireless saddle pressure sensing system
 - Full digital knee angle sensing system
 - Knee model parameter extraction
 - Portable inductive powering and communication system for implantable instrumentation
 - Embedded high resolution and low power strain gauge measurement system
 - Fully automated pressure bench for sensor calibration

THOMAS

Feel free to contact us if one is interested in some research topics or possible projects or international cooperation

> Thank you for your attention!

Are there some questions?

AmiEs-2015 @ Vives UC, Ostend, Belgium

THOMAS