

Overview

- Introduction
 - The proposed technique description
 - Motivation & Aims
- Implementations of the Proposed Methodology
- Related Work
- Methodology & System Analysis on FPGA
 - Image processing
 - MATLAB[®] vs. FPGA
 - Encryption- Decryption
- Measurements Results
- Conclusion
- Future Work

Introduction

The proposed technique description

- A system designed by two microblaze processors
 - 1^{rst} : processing the selected image by applying the Sobel edge detection algorithm.
 - 2nd : encryption decryption via TEA, Present, Blowfish and AES algorithms.
- Results verification of the processed image, to the corresponding exported by MATLAB[®] for the same image.
- Efficiency Measurements and Optimization of different cipher algorithm.
- Implementation on ml405 of Xilinx with FPGA Virtex4.

Motivation & Aims

- Encryption implementation of a real application on FPGA platform.
- Implementation and comparison of cipher algorithms on FPGA development platform
- Verifying results of FPGA with those of MATLAB[®].
- Encryption-decryption evaluation by differently data format

Implementations of the Proposed Methodology

- Personal Convenience
 - Mobile phones
 - Personal Digital Assistant (PDA)
- Telecommunications
 - Digital telephone exchanges
 - Network equipment (routers, switches, etc.)
- Computers & Peripherals
 - Wireless Networks (routers and Wi-Fi cards, etc.)
- Services
 - Systems of automated teller machine (ATM), credit card transactions

Related Work

- Xilinx FPGA implementation of a pixel processor for object detection applications, Peter Mc Curry, Fearghal Morgan, Liam Kilmartin.
 - Implementation of TEA at Sensors
- EMBEDDED IMAGE PROCESSING SYSTEM ON FPGA, vo
 - Ky Chau and Truong Quang Vinh, Viet Nam
 - Image processing on Embedded Systems on FPGA
- A Digital Image Copyright Protection Scheme Based on Visual Cryptography, Ren-Junn Hwang, TamKang y Tamsui, Taipei Hsien, 251, Taiwan, R.O.C.
 - Watermarking
- A brief experience on journey through hardware developments for image processing and it's applications on Cryptography, Sangeet Saha, Chandrajit pal, Rourab paul, Satyabrata Maity, Suman Sau
 - Secure image transmission on multiple FPGA

Methodology & System Analysis on FPGA

- Image processing (Sobel) Comparison of MATLAB[®] with FPGA
- Implementation of Sobel detector on 'cameraman.bmp' image on MATLAB[®] so as to find the edges.
- Comparison of the initial image's results (having undergone Sobel mask) in MATLAB[®], as those of the dual core system on FPGA.

'cameraman.bmp'

Results of MATLAB®

Sobel Horizontal Edges

Sobel Vertical Edges

Methodology & System Analysis on FPGA

- Processors operation and Virtex4
 FPGA
 the subsystem's
 architecture
 - FSL: Processors communication
 - Core 0 : Sobel, flag = "true"
 - Core 1 : flag= "true", TEA
 - SRAM : Storage of processed Pixels
 - PLBus : Communication of processors with peripherals.

Methodology & System Analysis on FPGA Image processing - Sobel

- Creation Insert Image
 - The image is a 2D table, 30x29 which is stored in the local memory of the first core
- Transfer of processed pixels in SRAM
 - Sobel sends the processed pixels making use of a pointer which is placed in the SRAM
- Output of processed image
 - By the use of a function the user is capable to view the processed image
- Trigger among cores
 - The first core triggers the second through the fsl in order to launch the last one.

Methodology & System Analysis on FPGA Encryption of Processed Image - TEA

- Launching TEA
 - The encryption begins as soon as the second core is triggered by the proper flag.
- Extraction of processed pixels from SRAM
 - The second core reads the processed image from the SRAM
- Insert image per 2 pixel of the processed image input the encryption algorithm
 - Storage of the pixels in a 1D table in order to be encrypted

Methodology & System Analysis on FPGA

Measurements – Results

• Comparison of encryption algorithms

Encryption			
	seconds		
	pixels	chars	
Present	0,279	0,271	
TEA	5,21E-02	5,12E-02	
Blowfish	0,268	0,268	
AES	0,269	0,268	

T=10ns

• Apparent difference of TEA regarding the other algorithms!

Measurements – Results

• Comparison of decryption algorithms

Decryption					
	seconds				
	pixels	chars			
Present	0,279	0,283			
TEA	5,12E-02	5,11E-02			
Blowfish	0,268	0,268			
AES	0,269	0,278			

• Either with input data pixels, or chars, came out similar results!

Measurements – Results

• Required cycles for each process

Total Cycles / Algorithm					
	AES	Present	TEA	Blowfish	
encipher	268	279	5	268	
decipher	269	283	5	268	
sobel	63,9	63,9	63,9	63,9	
transport*2	2,80E+01	28	28	28	
Total(*10^6)	628,9	653,9	101,9	627,9	

Conclusion

- The TEA algorithm extracts the same results on less time than the Present, AES and Blowfish.
- The data entered as input on cipher algorithms do not significantly affect the overall operation.
- The image processing performed has the same effects as those of functions on MATLAB \mathbb{R} .
- The encryption of the real implementation is implemented rapidly, by selecting the appropriate cipher algorithm.

Future Work

- A comparison with other subsystems and methodologies so as to export more comprehensive conclusions.
- Comparison of the algorithms with a higher range of data.
- Creating a HW Block in order to undertake the encryption and decryption process of memory data, by implementing the TEA.

