
Extension of the WebRTC Data Channel Towards

Remote Collaboration and Control

Nikos Pinikas, Spyros Panagiotakis, Despina Athanasaki, Athanasios Malamos

Department of Informatics Engineering

Technological Educational Institute of Crete, Heraklion, Greece

npinikas@hotmail.com, spanag@teicrete.gr, despinadev@gmail.com, amalamos@ie.teicrete.gr

Abstract— WebRTC is a project that allows browser-to-

browser voice, video and data communication without the use of

plugins, offering a more immediate communication without the

need of a centralized system. It enables rich, high quality RTC

applications to be developed for the browser, mobile platforms,

and Internet of Things (IoT) devices, and allows them all to

communicate via a common set of protocols. By utilizing these

technologies, WebRTC-enabled IoT devices could enhance the

“telerobotic” and “telepresence” experience of their users,

allowing them to not only “interact” with these “things” but also

“see” the interaction taking place and even interact

collaboratively. In this paper we propose a communication

protocol that allows calling and evaluating JavaScript functions

and performing actions on remote peers. This protocol can be used

in online collaboration platforms and by extension in IoT devices

by using IoT JavaScript libraries such as Cylon.js. We also

describe a language for exchanging collaboration information and

metadata including whiteboard sketches and video annotations.

We have developed an online collaboration platform that takes

advantage of these technologies and protocols to offer peers the

ability to collaborate in real time using whiteboards and text

annotations on video streams which are generated from a variety

of sources including web cams, screen captures and local video

files.

Keywords— WebRTC; Whiteboard; Online collaboration;

Screen casting; Internet of Things

I. INTRODUCTION

Collaboration can be defined as the common effort of a
group of people to create something. Tools that aid collaboration
were around long before computers - whiteboards, flipcharts or
even a piece of paper can be used to support collaboration [1].
Computers and the Web revolutionized the way people work
together in groups. In the 80s the term “groupware” was coined
by C. A. Ellis who defined it as a “computer-based system that
support groups of people engaged in a common task (or goal)
and that provide an interface to a shared environment” [2].
Popular groupware software packages included Lotus Notes and
Microsoft Exchange.

 Today online collaboration tools can be classified in two
categories [3]:

� Asynchronous collaboration tools. These tools
enable participants to collaborate at different times and
different locations. These tools are useful for
collaborating over time and providing resources and
information that are accessible at any time. For
example, by checking the revision history participants
are able to see who has contributed, when they have
contributed, and what they have contributed. Plus, the
use of comments allow participants to agree, debate, or
explain changes needed in the work.

� Synchronous collaboration tools. These tools enable
participants to collaborate in real-time, whether in the
same location or in different places. The key point of
synchronous tools is that the technology lets the
communicators work together at the same time.

The emphasis of this paper is on synchronous online
collaboration since these kinds of tools are now made possible
on the Web with the introduction of Web real-time
communication technologies such as WebRTC. Synchronous
collaboration can have many advantages over asynchronous
collaboration methods that include immediate response and
feedback, video/web conferencing allowing for body language
and tone of voice, increased motivation and engagement with
discussed concepts and increased social presence.
Disadvantages of synchronous collaboration include the lack of
reflection between collaborators, the requirement for large time
commitment of the collaborators, the difficulty to achieve one to
many communication and the fact that if the technology fails the
collaboration session not possible [4].

Tools that aid synchronous collaboration include
whiteboards, video and audio communication, text chat and
screen sharing. Whiteboarding in particular is a teaching and
collaboration practice in which participants use a whiteboard
area to draw or write concepts, charts, maps, tables, diagrams,
equations etc. Smith et al. in [5] conducted a literature review on
interactive whiteboard and found among other things that they
are particularly effective in education and virtual classrooms
allowing teachers to use teaching time to discuss student-
generated ideas rather than merely presenting information.

 Prior to developing a system aimed at synchronous online
collaboration and control, a protocol defining a uniform way in
which all the messages that carry the required data that are

exchanged through the WebRTC data channel must be
developed. This is necessary if the system is going to be easily
expandable, interoperable and maintainable. What we propose
is a “language” defining the actions and their parameters that
take place in such a collaboration environment. The proposed
protocol predefines a number of common collaborative
functions such as text chat, whiteboard sketches and video
annotation but also defines a way for evaluating JavaScript
functions in remote peers. This gives developers the ability to
adapt any existing JavaScript library for remote use. In the field
of IoT devices for example, one such library is Cylon.js which
is a JavaScript framework for robotics, physical computing, and
the Internet of Things [6]. Using this library in combination with
the peer-to-peer capabilities of WebRTC gives us the ability to
create a collaboration environment in which users can not only
collaborate and communicate with each other but also
collaboratively use an IoT device in real time. IoT Devices that
have this capability can also connect directly with other peers
using the Janus general purpose WebRTC gateway which allows
devices to setup a WebRTC media communication with the
browser, exchanging JSON messages with it [7], as summarized
in figure 1.

Fig. 1. Controlling an IoT device through the WebRTC data channel

The rest of the paper is organized as follows: In section II we
discuss existing work on online collaboration, whiteboards and
the combination of WebRTC and IoT. In section III we
introduce to the inner details of WebRTC. Section IV details in
our proposed protocol aimed at online collaboration and control.
Finally section V concludes the paper.

II. RELATED WORK

A number of synchronous online collaboration platforms
have been proposed or implemented commercially. Jara C. in [8]
proposed a web learning system which combines synchronous
collaborative learning in 3D virtual laboratories. In their work,
they intergraded their framework in the popular EJS physics
program, allowing users to collaborate using the WebGL
platform. Andrioti Z. in [9] combined WebRTC and the Evie-m
platform [10] to create an online collaborative educational
virtual environment for teaching mathematics. It is argued that
online collaboration used in education leads to more positive
learning outcomes (learning through participation in a group)
and more engaged learners [11].

Whiteboarding is one of the most popular applications of
synchronous online collaboration. Interactive whiteboards offer
a considerable potential to enhance student learning and are
excellent pedagogical tools when used appropriately [12]. For
example Metz et al. in [13] designed a collaborative whiteboard
which was then evaluated by assigning tasks to a group of users
and collecting data from user interactions and chat
communication. They showed that whiteboard can be an
effective collaboration tool. Interestingly, they observed that the
collective consciousness of the group of users is created through
off-task interactions and so we can deduce that this capability to
have “off-task interaction” is one of the reasons that video
communication and text chat significantly improve
collaboration efficiency and is one of the advantages of
synchronous collaboration. Today many online whiteboards are
commercially available on the web.

The possible combination of WebRTC with the IoT has not
been explored in depth. One of the few examples where WebRC
and IoT meet is in the work of Sandholm et al. in [14] who have
developed a WebRTC gateway that can tunnel sensor and
control data from medical devices. Another example is Neil
Stratford’s use of the data channel to control LED strips that are
connected to a Raspberry Pi that runs Janus [15]. Finally Fan
Yung in [16] proposes a system where audio captured by
smartphones is send via the WebRTC audio channel to Wireless
Sensor Networks in order to monitor environmental condition
with a minimum cost.

III. WEBRTC

WebRTC (Web Real Time Communication) is a technology
that allows real-time peer-to-peer communication between
browsers without the use of additional plugins. The mission of
WebRTC is “to enable rich, high-quality RTC applications to be
developed for the browser, mobile platforms, and IoT devices,
and allow them all to communicate via a common set of
protocols” [17]. WebRTC was open-sourced by Google in 2011
and after that an ongoing work started to standardize the
protocols associated with it by IETF and its browser APIs by
W3C. Interest and support for WebRTC has been since growing
steadily. Today, the most advanced WebRTC implementation is
offered by Mozilla Firefox and Google Chrome. These browsers
are now supporting the majority of the features of WebRTC that
are proposed by the corresponding W3C drafts [18]. Other
platforms that support WebRTC to some extend include the
Opera browser, the Android platform and Apple’s iOS platform.
Microsoft in its Edge browser supports another set protocols
named ORTC which does not use the SDP for session
descriptions but it is planned to be interoperable with WebRTC
[19]. It is expected that by 2018 WebRTC will be supported by
4.7 billion mobile devices [20] and 1.5 billion PCs that run
WebRTC enabled browsers bringing the total number to over
6.2 billion

WebRTC enabled devices. WebRTC implements three
APIs: a. The MediaStream API which is responsible for
capturing streams of media that includes video taken from the
user’s web camera, a stream from a canvas or video element or
a screen capturing stream. b. The RTCPeerConnection API
which is used to send these streams between browsers and c. The

RTCDataChannel API is used to exchange arbitrary data such as
application and game data but also metadata between peers.

The presence of a data channel is one of the most important
features of WebRTC allowing the development of all kind of
P2P applications and collaborative solutions ranging from
synchronized development [21] to telehealth services [22] and
language learning [23] to “whiteboard collaboration” which is
the subject of this paper. The architecture of WebRTC including
the signaling server is shown in the following schematic:

Fig. 2. WebRTC Architecture

Although WebRTC aspires to enable Peer-to-Peer
communication between browsers without relaying data through
a server, a use of a server is still required for two reasons: The
first reason is the obvious one, a web server is needed to “serve”
the actual JavaScript application that utilizes WebRTC. The
second reason is less obvious. A server is required in order to
initialize sessions between the clients that need to communicate.
This process is known as “Signaling” and is responsible for the
exchange of the initial (meta) data of session descriptions (using
SDP) which contain details on the form and nature of the data
which will be transmitted [24]. These information can include
network data, such as IP addresses and ports, media metadata
such as codecs and codec settings, bandwidth and media types,
error messages or user and room information.

IV. A PROTOCOL FOR

SYNCHRONOUS COLLABORATION & CONTROL

The first step towards defining this “language” targeted at
synchronous online collaboration is to develop some form of
abstraction layer sitting on top of the native WebRTC
RTCDataChannel interface. There are two basic reasons for this:
First, we need functions to uniformly handle messages
exchanged between peers and second, because the use of the
internal WebRTC functions to exchange data through the data
channel is often a complicated task requiring many lines of code
and customizations. We propose wrapper functions
encapsulation the data channel functionality into simple send
and receive functions which simplify the development and
maintenance of the system. Finally we propose a “language” for
uniformly exchanging collaboration information and calling
function on a remote peer.

The communication model described above is shown in
figure 3. The foundation of the system is the native WebRTC
data channel RTCDataChannel.send() function and onmessage
property.

Fig. 3. Communication Model

For sending data we have developed a function called
sendDataAction() for sending strings and a function called
sendDataFile() for sending binary data. The option to compress
data using the Lempel-Ziv-Welch algorithm is also supported
through an optional argument. In the following listing the
definition of sendDataAction is given:

void sendDataAction(string message,

 bool compression)

Sends data through the WebRTC Data channel

using the native WebRTC RTCDataChannel.send()

method.

message The string to be sent

[compression] Optional. A Boolean

 representing whether the

 data should be compressed

 before sending

 true: Compresses data using

 the LZW algorithm

 false: No data compression

 (default)
Listing 1. Definition of the sendDataAction function

Note that while in our implementation the sendDataAction
function broadcasts all messages to the other peer in the room,
in a multiple-user environment this function could be adapted to
send messages to specific users only (for example by adding an
extra parameter defining a username)

The function handleMessage evaluates incoming messages
into function calls. Messages are comprised of array elements
separated by a double colon (::). The first element of the array is
always the name of the function to be called while the other
elements correspond to the parameters of that function. For
example when the system receives the string
“::MSGNM::PAR1::PAR2::” the callback function

handleMessage will look for a function named msgnm(p1, p2)
and call it with “PAR1” and “PAR2” as its parameters as shown
in the following schematic:

Fig. 4. Converting messages into function calls

Using the function handleMessage we can execute functions
of other JavaScript libraries, such as Cylon.js in combination
with Socket.io to control IoT devices as shown in fig. 1. A
remote peer can send messages to the local peer who is in direct
control of the device. These messages are in turn translated into
function calls of the Cylon Socket.io API. For example an
incoming message to blink LED x every y seconds could be in
the form of “LED::1::1000”. The function led(led_no, ms)
which would utilize the appropriate Cylon.js function call,
would then be called by the system.

Finally the top layer of figure 2 consists of the exchanged
standardized messages in the form of strings which represent the
actions and function calls. This ensures that the system is well
defined and can be easily expanded, but also interoperable so
that any WebRTC applications that use this protocol can
communicate with each other. The proposed protocol can be
used for presenting metadata on video streams, which can
include sketching information (Whiteboarding), or chat
messaging but can be equally used for any data exchanged
between peers including file data (binary), alerts etc.

As we explained, the way the system communicates actions
between peers is done using a very simple language. Two colons
(::, Unicode U+003A) are used to indicate that what follows is
system data in the form of either strings or “stringified” JSON
objects. Chat messages or any other data must be filtered and
barred from containing this set of characters. Messages also
contain an array of information, the elements of which are
separated by a double colon (::). The first element of the array is
always a 5 letter string defining the message type e.g.:

� URMSG : A chat message
� FILES : An incoming binary file
� SKTCH : Sketching data etc….

We theorize here that an online collaboration platform is
comprised of these two elements: video streams and users.
Therefore, messages come in two distinct forms: Messages that
are intended for canvases and messages that are intended for
users. For example a drawing corresponds to a canvas while a
chat message corresponds to a user (since a user can have more
than one canvas or video shared). We assume that in a peer-to -
peer environment messages are broadcast to all peers (all users
share the same streams). Of course it is possible to include the
name of the recipient in the message in order to send data
targeted at specific users.

Fig. 5. Message types

Finally we need to add instructions on how the message
should be handled once it is received. This is done as we
explained using function handleMessage. Developers using our
proposed protocol must set the RTCdatachannel.onmessage
property to the provided handleMessage function:

datachannel.onmessage = handleMessage;

The user of the libray must also have the function
sendDataAction available. Then the system is able to process
incoming messages in the way we have explained.

To summarize the expandability of the system, we give an
example of how we could add a “poke” function that would
broadcast a JavaScript alert to the other peer. First we need to
handle the onclick event of an HTML element. The event would
use the sendDataAction function with the prefix ::POKE::.

pokeLink.onclick=function(){
 var msg="::POKE::"+username+"::"+message;
 sendDataAction(msg);
};

We then proceed to write a function called “POKE” with as
many parameters as those defined by the received string (in our
example two parameters, one containing the sender’s username
and one with the message to display):

function poke(username, message) {
 alert(username + ' says: ' + message);
}

The system will call the function poke upon arrival of the
::POKE:: message and display an alert box as shown in the
following screenshot:

We also have predefined and implemented a number of
messages that are useful in a synchronous online collaboration
environment. Some of them are shown in the following table:

Prefix Data

::URMSG::

UNAME::DATA

A chat message from a user with

username “UNAME”

::SKTCH::

TARGET::WIDTH::DATA

JSON Sketch data including text

annotation for the stream named
“TARGET”

::FILES::

DATA
Data for incoming files

::PAUSE::

TARGET::TIME
Pauses a stream at a specified time

Table 1. Sample messages

We have developed a sample application that uses the
protocol described in this paper. The users have the ability to
send video streams to each other. These streams can be sourced
from a webcam, an application or window, a monitor, or a local
video file. Both users can add text and sketch annotations on any
video stream (fig. 7). Capturing the screen or a part of it and then
converting it into a stream is done using the “Screen Capture”
API which is an extension to the Media Capture API
(getUserMedia) and defines a way for the user’s display or parts
of it to be used as the source of a media stream [25]. The ability
to capture local media files and then send them to other peers as
a WebRTC media stream is made possible using the “Stream
Capture from Media Elements API” [26]. Users also have the
ability to record streams and the annotations and sketches on
them, for storage on their local computer as WebM files using
the “HTML5 Media Recording API”which provides a simple
mechanism by which developers can record media streams from
input devices and instantly [27] (fig. 6).

Fig. 6. Users have the ability to share streams generated from local video files,
annotate these streams and record them as WebM files

Sketching data are in the form of JSON objects which are

comprised of mouse actions and mouse coordinates and text
annotation information. Note that the format of the JSON object
containing the sketching data and text annotations is not
standardized, new features can be added to it as long as the
sktch(target, width, data) function (see table 1) is adapted
accordingly. A possible SKTCH message is shown in listing 2.

::SKTCH
::pbt6HN5gVideoSketch
::640
[{
textcaption: "Hello World",
text_x:10,
text_y:10,
text_size:20
}]

Listing 2. A sample message containin information about a text annotation

targeted on a stream named ‘pbt6HN5gVideoSketch’

For simplicity the above example specifies that that function
SKTCH should be called for the canvas element named
“pbt6HN5gVideoSketch”. The next line specifies that on the
senders screen this element has a width of 640 pixels (aspect
ratio is always equal to 1). Finally the “stringified” JSON object
containing information about a text caption (in this case a label
with the message “Hello World, size 20 at position (10,10) of
the canvas) is attached to the message.

Fig. 7. Users sketching on an open PDF document

It becomes obvious that this protocol can be extended to IoT
devices by using existing IoT JavaScript libraries (figure 1). For
example the SocketIO API plugin of the Cylon.js library can be
used to remotely interact with an Arduino microcontroller in
real-time. The user of such a library can use our proposed
protocol to call functions of this library through the WebRTC
data channel as seen in figure 8. In this example a Cylon.js
Socket.io connection is established between one of the peers’
computers. The developer has defined the message:

::USELED::user:action::par1::par2

The message states that user USER requests to perform an
action on a specific LED on the Arduino board. The message
would be translated in the following function call:

function USELED("user", "action", "par1",
"par2")

Which would then in turn call the Socket.io emit function:

device.emit("action", "par1", "par2");

Fig. 8. A remote user observing an Arduino board through the webcam can

issue commands to it through the WebRTC data channel (In this case a toggle
of the status of the onboard led 13) and even sketch or record the video stream.

In the above example a Toggle button has been added so that
when clicked it sends the “USELED::USERNAME:TOGGLE”
string through the WebRTC data channel. Upon receiving that
string, the peer whose computer has an established connection
with the Arduino device will toggle the state of LED13 on the
board. Applications of this technique could include the
collaborative control and observation of more advanced devices
such as motors, servomechanisms, analog sensors etc.

V. CONCLUSIONS

WebRTC is a relatively new technology that allows browser-
to-browser communication. In this paper we presented a
possible application of WebRTC technology in the fields of
synchronous online collaboration and IoT control. The
WebRTC data channel API is designed to mimic WebSocket
exactly, and supports strings as well as some JavaScript binary
types as Blob, ArrayBuffer and ArrayBufferView. The existence
of a data channel on WebRTC makes possible a number of
applications to be developed ranging from online gaming to file
sharing.

We propose a uniform way of exchanging data through the
WebRTC data channel that can be used to transfer metadata for
online collaboration platforms and for evaluating JavaScript
functions in remote systems and by extend we suggest an
application of this protocol in combination with existing IoT
JavaScript libraries such as Cylon.js or Janus to remotely control
IoT devices.

We have also developed an application as a prototype
intended to demonstrate the capabilities of WebRTC and the
proposed protocol, and its potential use for online collaboration,
whiteboarding and media streaming. The application takes
advantage of modern HTML5 APIs such as the Screen Capture,
Media Recording and Stream Capture from Media elements to
offer users the ability to share video streams from a variety of
sources and then use the WebRTC data channel to exchange
collaboration metadata that include sketches, video annotations
and IoT device actions.

REFERENCES

[1] J. F. N. Jr, R. O. Briggs and N. C. Romano, Collaboration Systems:

Concept, Value, and Use, New York: Routledge, 2014.

[2] C. A. Ellis, S. J. Gibbs and G. Rein, "Groupware: some issues and

experiences," Communications of the ACM, vol. 34, no. 1, pp. 39-59,

1991.

[3] T. Walhert, "Synchronous or Asynchronous Tools," Green Hills Area

Education Agency, [Online]. Available: https://sites.google.com/a/

ghaea.org/aiw-iowacore-techintegration/synchronous-vs-

asynchronous. [Accessed 16 4 2016].

[4] B. Kask and S. Wood, "Synchronous and Asynchronous

Communication:Tools for Collaboration," University of British

Columbia, [Online]. Available: http://etec.ctlt.ubc.ca/510wiki/

Synchronous_and_Asynchronous_Communication:Tools_for_Collabo

ration. [Accessed 16 4 2016].

[5] H. J. Smith, S. Higgins, K. Wall and J. Miller, "Interactive whiteboards:

boon or bandwagon? A critical review of the literature," Journal of

Computer Assisted Learning, vol. 21, no. 2, pp. 91-101, 2005.

[6] "Cylon.js," [Online]. Available: https://cylonjs.com/. [Accessed 3 9

2016].

[7] A. Amirante, T. Castaldi, L. Miniero and S. Romano, "Janus: A General

Purpose WebRTC Gateway," in Proceedings of the Conference on

Principles, Systems and Applications of IP Telecommunications,

Chicago, IL, 2014.

[8] C. A. Jara, F. A. Candelas, F. Torres, C. Salzmann, D. Gillet, F.

Esquembre and S. Dormido, "Synchronous collaboration between auto-

generated WebGL applications and 3D virtual laboratories created with

Easy Java Simulations," in 9th IFAC Symposium Advances in Control

Education, Nizhny Novgorod, 2013.

[9] Z.-E. Andrioti, Web3D Gaming Over HTML5 and Web-Based

Communication, 2015.

[10] K. Kapetanakis, H. Andrioti, H. Vonorta, M. Zotos, N. Tsigkos and I.

Pachoulakis, "Collaboration framework in the EViE-m platform," in

Proceedings of the 24th EAEEIE Annual Conference, 2013.

[11] M. Hammond, "Online collaboration and cooperation: The recurring

importance of evidence, rationale and viability," Education and

Information Technologies, pp. 1-20, 2016.

[12] R. Zevenbergen and S. Lerman, "Learning Environments Using

Interactive Whiteboards: New Learning Spaces or Reproduction of Old

Technologies?," Mathematics Education Research Journal, vol. 20, no.

1, pp. 108-126, 2008.

[13] S. M.-V. Metz, P. Marin and E. Vayre, "The shared online whiteboard:

An assistance tool to synchronous collaborative design," European

Review of Applied Psychology, vol. 65, no. 5, pp. 253-269, 2014.

[14] T. Sandholm, B. Magnusson and B. A., "An On-Demand WebRTC and

IoT Device Tunneling Service for Hospitals," in 2014 International

Conference on Future Internet of Things and Cloud (FiCloud), 2014.

[15] N. Stratford, "WebRTC Lights," Binary Fen , 17 4 2015. [Online].

Available: http://www.slideshare.net/jaquayle/webrtc-lights-by-neil-

stratford-of-binary-fen.

[16] F. Yang, "Enhancing the Internet of Things with Reconfigurable

Hardware and Software," in Middleware Doctoral Symposium,

Vancouver, BC, 2015.

[17] "WebRTC," [Online]. Available: http://www.webrtc.org/home.

[Accessed 4 7 2015].

[18] "Is WebRTC ready yet?," [Online]. Available: http://

iswebrtcreadyyet.com/. [Accessed 5 5 2016].

[19] J. Wager, "What Developers Should Know About ORTC Versus

WebRTC," ProgrammableWeb, 12 10 2015. [Online]. Available: http:/

/www.programmableweb.com/news/what-developers-should-know-

about-ortc-versus-webrtc/analysis/2015/10/12/.

[20] ABI Research, "4.7 Billion Mobile WebRTC Devices by 2018 Despite

Lack of Open Support from Apple and Microsoft," 25 9 2013. [Online].

Available: https://www.abiresearch.com/press/47-billion-mobile-

webrtc-devices-by-2018-despite-l/.

[21] K. Jain, A. Himmatramka, A. Bhandary, A. D’silva and D. Barge,

"Synchronized Development Using WebRTC Real-Time Collaboration

in WebRTC," International Journal of Engineering Science, vol. 6, no.

4, 2016.

[22] L. V. Ma, J. Kim, S. Park, J. Kim and J. Jang, "An efficient

Session_Weight load balancing and scheduling methodology for high-

quality telehealth care service based on WebRTC," The Journal of

Supercomputing, pp. 1-18, 2016.

[23] I. V. Osipov, A. A. Volinsky and A. Y. Prasikova, "E-Learning

Collaborative System for Practicing Foreign Languages with Native

Speakers," International Journal of Advanced Computer Science and

Applications, vol. 7, no. 3, 2016.

[24] S. Dutton, "WebRTC in the real world: STUN, TURN and signaling,"

[Online]. Available: http://www.html5rocks.com/en/tutorials/webrtc/

infrastructure/. [Accessed 20 2 2016].

[25] W3C, "Screen Capture," 14 6 2016. [Online]. Available: https://

www.w3.org/TR/screen-capture/.

[26] W3C, "Media Capture and Streams," 19 5 2016. [Online]. Available:

https://www.w3.org/TR/mediacapture-streams/.

[27] "MediaRecorder API," Mozilla Developer Network, [Online].

Available: https://developer.mozilla.org/en/docs/Web/API/

MediaRecorder_API. [Accessed 9 9 2016].

