
Implementation and Performance Analysis of
Precision Time Protocol on Linux based

System-On-Chip Platform
Mudassar Ahmed, Robert Manzke

Faculty of Computer Science and Electrical Engineering
Kiel University of Applied Sciences

Kiel, Germany

Abstract—Precision Time Protocol (PTP) claims to overcome
time synchronisation challenges; it provides a self-organising
time synchronisation protocol while utilising the existing ethernet
based network capabilities for timekeeping applications. Time the
message is sent or received at master/slave device is recorded
(Timestamped), the precision of this time measurements is
essential, it sets a fundamental level of accuracy for time synchro-
nisation. The Timestamp for a PTP message is generated either
on Software or Hardware level. A research objective of the study
is to analyse the precision uncertainties and maximum attainable
accuracy in both hardware and software timestamping-based
implementation of the protocol. As the PTP protocol does not
require additional physical network infrastructure to establish
a primary PTP network. So, to analyse the possible effect on
the performance of established PTP network, the simulated load
is applied in different dimensions (CPU, I/O and Network) on
PTP nodes during clock communication. The paper presents the
summary of the PTP protocol, PTP infrastructure in Linux, and
it presents the results collected during the different test case
scenario, the results are further analysed and evaluated to draw
a conclusion.

Index Terms—Precision Time Protocol, PTP, IEEE 1588, Time
Synchronisation, Timestamping

I. INTRODUCTION

Continuous transformation of computer systems from large-
scale isolated units to application-specific distributed units
is rising the challenge of time synchronisation due to their
associated and time-critical actions. The specific clock in
a networked system needs to be checked whether the time
deviation is acceptable for the particular application or there is
a need for correction in time. As the distributed systems are be-
coming more complex and modular, where each module/node
is communicating via a standardised communication medium,
the demand for precision and accuracy of time synchronisation
is increasing, IEEE 1588 Precision Time Protocol (PTP)
developed to overcome these challenges.

The widespread adaptation of Precision Time Protocol
(PTP) is not just limited to industrial automation and mea-
surement systems, the integration of PTP is also realised and
standardised in many leading technologies/sectors like Audio-
Video Bridging, Smart Power Grids and Financial Systems.
Due to widespread recognition of PTP, the silicon vendors are
also offering an onboard sense of time support with hardware-
assisted timestamping capabilities for the wide variety of

solutions. Additionally, official integration of hardware times-
tamping and PTP Hardware Clock (PHC) API in mainline
Linux kernel is becoming a catalyst in the development
and adaptation of Linux based software solution for time
synchronisation applications in different sectors. It is probable
that different Linux kernel resource-scheduling procedures can
affect the time timestamping process. The source of these
latencies can be other resource exhausting applications running
on the same system. In some cases, these resource-exhausting
applications cannot be avoided as an overall system.

A. Research Objectives and Goals

Goals:

• Enabling Hardware timestamping capabilities of Linux
bases SoC Platform (BeagleBone Black).

• Analyzing the behaviour of open source software solution
for PTP implementation while simulating different load
scenarios (Network load, Processing load) in Linux OS.

Research Objectives/Questions:

• Analysis of precision uncertainty in Hardware and
Software-based solutions of PTP.

• What is the maximum attainable accuracy with Hardware
and Software-based solutions of PTP?

B. Approach and Outline

The protocol hierarchy is established using multiple IEEE
1588 clock based SoC (hardware-assisted) platform in dif-
ferent test case scenarios (Hardware/Software Assisted and
with Simulated load), an open-source solution [3] is used
to establish the network in Linux environment. The log data
generated in a specific scenario is prepared and imported to
MATLAB workspace, where comparison of results in different
scenarios are compiled in graphical form.

First, the paper introduces to the time synchronisation and
give an overview of the PTP protocol in section II. Section
III focuses on the Linux support for PTP in the context of
the timestamping mechanism and Clock control mechanism.
Implementation aspects are discussed in IV. The results of
the test scenarios are presented and discussed in Section V.
Finally, the Section VI draws the final conclusion on work.



II. LITERATURE REVIEW

A. Time Synchronization

The time is a measurable period in which a particular event,
process or action may occur. In the domain of distributed
systems, it can be used to conclude the rate of change, event
ordering, an interval between different process and exact time
of particular action. A clock is used to measure the specific
spot in the time or a whole interval of time. In an embedded
system, the clock is driven by an internal oscillator, which
generates the signals with a precise frequency. In a networked
system, where different nodes are having diverse type of
clocks, which are powered by non-identical oscillators. These
oscillators are running at different frequencies and having dif-
ferent behaviour in different conditions (Temperature, Voltage)
[9], which results in a timing error. So, there is a need for
time synchronisation to correct the drifting clocks from the
reference time. There are several methods/principles in time
Synchronization. [8] [7]

External Synchronization: In External Synchronization all
nodes are synchronised with external time source, that can be
via the Internet using NTP or using GPS.

Internal Synchronization: In Internal Synchronization
nodes are synchronised with each other via establishing a
master-slave hierarchy base network or with a reference clock.
It is not necessary to synchronise with an external time source.

Hybrid Synchronization: This method is similar to Internal
Synchronization, but the reference/master clock is tuned with
an external time source.

TABLE I
COMPARISON OF TIME SYNCHRONIZATION TECHNOLOGIES [10]

GPS NTP IEEE-1588
Spatial Extent Wide Area Wide Area A few Sub-nets
Communications Satellite Internet Network
Target Accuracy Sub-Microseconds Few Milliseconds Sub-Microseconds
Hierarchy Client/Server Distributed Master/Slave
Administration N/A Configured Self-Organizing
Hardware Assisted YES NO Optional (For High accuracy)

NTP: The main focus of the NTP protocol is on the
systems, which are spread over a wide network, the target
device is synchronised with a time server over the internet.

GPS: The GPS systems communicate via satellite, which
provides different services including timing. Regarding time
synchronisation, GPS is used for autonomous systems which
are remotely located in the certain area and receiving timing
information via satellite communication.

B. Overview of IEEE 1588 Precision Time Protocol (PTP)

Precision Time Protocol was first introduced in 2002 [1]
and then further extended in 2008 [2]. PTP hierarchy is
based on master/slave relation of clocks, the hierarchy is
established using PTP enabled devices, which are mainly real-
time clocks. In the protocol hierarchy, the top-level clock is
called Grandmaster-Clock, which is treated as a reference time
in the network, and other clocks can perform a role of slave or
master. The Best Master Clock Algorithm (BMCA) ensures the
self-organising property of protocol, by enabling PTP device

to choose a specific role in the hierarchy, either in any case of
failure of a master clock or in obtaining a master clock role
on the base of clock data sets.

C. Protocol Standard Messages

The whole hierarchy of PTP system is based on the PTP
messages exchange, which enables every PTP device from the
bottom level of the hierarchy to synchronise with their mas-
ter device, this chain reaches to grandmaster clock/reference
clock. PTP messages are categorized in General Messages and
Event Messages.

Event Messages: Event messages are timestamped mes-
sages, which are critical for accuracy in delay calculation
mechanism of PTP.

General Messages: General messages are ordinary data
transmitting or configuration messages, which are not times-
tamped but used to transport the timestamping information.

D. Protocol Standard Devices

Ordinary Clock (OC): The OC is a single port clock, which
can be a master or slave clock. It communicates with other
PTP devices through a single communication path. [1]

Boundary Clock (BC): The BC node has more than one
ports to communicate within the network through multiple
communication paths. It is used to further extended the net-
work and each port of BC act as an OC. In the case of failure
of reference clock, it will act as a time source in the network.
[11]

Transparent Clock: There is no master/slave state in Trans-
parent clock; it has multiple communication ports for transfer-
ring PTP messages. During forwarding messages from input
port to output port, it computes delay caused by a device in
transferring process of the PTP messages. The computed delay
is called residence time, this residence time then added to
designated correction field part of particular timing message.
[11] [2] [12]

E. Message Exchange and Delay Computation

In the synchronisation process, the time information is
exchanged between master and slave for the calculation of
offset between clocks and delay caused by the network infras-
tructure. For that, there are two mechanisms defined, which
are used with different combination of network infrastructure.
Overview of the mechanisms is given below.

1) Delay Request-Response Mechanism: The mechanism
yields mean path delay (Average of the time taken by data
to travel between slave and master). As shown in Figure 1,
Sync message is timestamped at t1 and sent to the slave;
practically the Sync message is sent at t2m due to unknown
network delays. So, another Follow Up message containing
the timestamp value of t1 is sent to acknowledge the slave
about the specific instance, when the Sync message was
timestamped. Similarly, Delay Req message is timestamped at
t3 and received at the master at t4 instead of t3m due to delays,
the master clock sends a response message, which contains the
exact time when Delay Req message was received.



Fig. 1. PTP Delay Request-Response Mechanism (End-to-End) [6]

MeanPathDelay =
(t2 − t1) + (t4 − t3)

2
(1)

OffsetFromMaster = (t2 − t1)−MeanPathDelay (2)

2) Peer Delay Mechanism: In this mechanism of delay
calculation is same as the end-to-end mechanism, but instead
of Delay Req message, the Pdelay Req, and Pdelay resp
messages are exchanged, these messages are sent to the port
which is immediately connected. [2] [12]

F. Self-Organising Hierarchy Establishment Mechanism

As a self-organising protocol, master/slave states of the
clock are determined by the best master clock algorithm
(BMCA), every ordinary (OC) and Boundary clock (BC)
is equipped with BMCA. The algorithm enables OC/BC to
determine their states locally instead of negotiating within
a network to decide the clock state. [7] For every clock,
there are standard clock properties (Priority1, Class, Accuracy,
Variance, Priority 2 and Unique Identifier) are defined, which
are used by the BMCA to compute the state of clock [2].
These properties can be used to manipulate the behaviour of
BMCA in order to assign the particular role to a specific clock.
A clock, either explicitly configured (clock properties) as the
best clock or consider itself on the bases of BMCA as an
eligible master clock, in both cases the clock advertises its
clock properties via sending announce message in the network.
In case of failure of the master clock or recognition of another
better clock in the network, then the master-state associated
messages (Sync and Announce) stops, and another clock takes
the role of the best master clock. [13]

III. PTP INFRASTRUCTURE IN LINUX

The journey of time synchronisation begins with NTP (Net-
work Time Protocol), and David Mills is known as the father
of NTP. Many of Mills purposed method for timekeeping and
synchronisation of internal and external clocks can be seen in
more advanced and accurate time synchronisation protocol like
PTP. [4] The first version of PTP was standardized in 2002 and
three years later Kendall Correll introduced a first opensource

software-only solution (ptpd) [5] for implementation of PTP
on Linux based systems. The solution became a base for
further development in this domain. Later in 2009, Patrick
Ohly introduced hardware timestamping in Linux kernel [3],
Ohly then altered existing version of ptpd and extend his
support for hardware supported synchronization [6]. Although
hardware timestamping mechanism was already introduced in
the Linux kernel, but there was no proper solution to control
the hardware clock. So, in 2010, Richard Cochran introduced
PTP clock infrastructure in Linux [3]. Later in 2011, Cochran
presented the LinuxPTP tool for hardware and software based
time synchronisation solution using hardware timestamping
and PHC API of Linux kernel [4]. These opensource solutions
and Linux kernel support are playing a vital role in the devel-
opment and widespread use of this protocol. Many developer
and researchers are using and extending these tools to realise
their concepts on different platforms for intended applications.

A. Timestamping Mechanisms

Software Timestamping: Timestamps can be generated at
different layers of a network; software timestamping is most
widely and readily available option. In software timestamping,
SO TIMESTAMP options of Linux kernel is used which is the
most widely exercised options in opensource implementations
of PTP protocol. As shown in figure 2, the packets are
timestamped at userspace using system time. Furthermore,
timestamped packet still need to pass through other layers
of the network in order to reach the physical channel of the
network, which also causes some amount of error.

Application

OS

MAC

PHY

Software
Timestamp

Hardware
Timestamp

Fig. 2. Software and Hardware Timestamping

Hardware Timestamping: Hardware-based timestamping
effectively reduces the jitter caused by OS level uncertainties
and reduces the error resulted by network layers. Hardware
timestamping can be either on MAC or PHY layer, it depends
on the type of hardware. Linux network stack supports hard-
ware timestamping by using SO TIMESTAMPING feature.

B. PTP Clock Infrastructure and Control API

The first open source PTP solution (ptpd) was released in
May 2005, which supports software only PTP implementation.
Although many attempts are made to integrate PTP hardware
support by using Linux ioct procedures and adding many pre-
processor commands in the software-only solution of Kendall
Corrells, which made existing code more unsuitable for sup-
port of multiple hardware [3]. After the official integration of
hardware timestamping, which was proposed by Patrick Ohly,



there was no PHC clock infrastructure in the Linux although
Ohly proposed two concepts (Assisted system Time and Two-
level PTP) for the synchronization of system clock with PHC
in his publication [6] but there was no efficient mechanism was
proposed to control the PHC clock [3]. In order to overcome
these problems, In 2010 Richard Cochran introduce a PTP
clock infrastructure, which was then integrated to Kernel
version: 3.0. The solution includes the PTP hardware clock
(PHC) drivers architecture and a standard mechanism in the
form of API to control PHC.

Clock Driver

Class Driver

Clock Driver

ApplicationApplication

Character Device

Kernel space

User space

Fig. 3. PTP Infrastructure in Linux [3]

Figure 4 shows the clock infrastructure, where the class
drivers cover the more generalised features like creation of
character device, validation of ioct calls and management of
the timestamped event ordering, and specific clock needs to
provide the clock driver which covers the hardware aspects of
the specific clock. The specific clock has to register their clock
driver with the class driver which will generate the Character
device; the Character device will be accessible to userspace via
PHC userspace API. The approach which is used to control
the PHC is quite similar to NTP timer model. [3]

IV. DESIGN AND IMPLEMENTATION

According to application requirements, the PTP network
can be established with hardware assistance or pure software
based. In order to implement the PTP protocol on Linux based
SoC platform, we chose LinuxPTP, a most reliable opensource
PTP implementation for UNIX like operating systems. Al-
though there is another solution (PTPd) available which also
claims hardware timestamping and PHC control based imple-
mentation, due to lack of compatibility for multiple hardware,
we preferred to use linuxPTP which is compatible for chosen
hardware platform and easily extendable to implement the
additional features. Regarding hardware platform, Beaglebone
Black is selected due to its support for hardware timestamping
for PTP protocol and wide acceptance in the open source
community as reference implementation platform. Addition-
ally, In order to utilize this hardware assistance, CONFIG PPS
and PTP 1588 CLOCK Kernel option should be enabled.
Furthermore, for performance analysis of PTP protocol on the
selected hardware-software combination, stress-ng and iperf
tools are used to put some stress on reference implementation
platform in different dimensions (CPU, Network). Finally, the
data collected from tests is cleaned and imported to MATLAB
workspace, where the data is compiled to graphical form.

A. Tools and technologies

1) LinuxPTP : LinuxPTP was introduced by Richard
Cochran [4] in 2011 after integration of PHC API in Linux
mainline kernel. There was two synchronisation mechanism
purposed by Patrick Ohly [6] to synchronise the system and
PHC clock. The LinuxPTP solution closely resembles the
second method which is ”Two-Level PTP” [4]. The LinuxPTP
project yields multiple executable files in order to establish the
whole two-step synchronisation mechanism.

ptp4l: The tool synchronizes (by default) PHC clock with
master clock in network. If the system does not have PHC then
it synchronises the system clock using software timestamping.

phy2sys: The tool synchronizes Linux system clock to the
PHC. In whole process the the phc2sys is synchronized with
ptp4l, where system clock act as slave and PHC plays a role
of master clock.

pmc: pmc is the realisation of PTP management client
as defined in the standard. The tool is used to get the extra
information from the network like identity, path delay and
accuracy.

Linux Based SoC Platform

Linux System

PHC System Clock

phy2sys

Master Clock 
Node

ptp4l
M M

SS

Fig. 4. LinuxPTP based Hardware Assisted Time Synchronization

B. Design Consideration and System Hierarchy

Flexibility is one of the forefront features of the PTP
protocol, and it is optional to use all PTP supported network
components, the network components include routers/ switch.
Although the hardware platform provides the hardware support
but the used network router (TP-Link TL-WR940N N450)
does not provide PTP support. So, the maximum/ dependable
accuracy and the precision is not guaranteed. On the other
hand, only the end-to-end delay calculation mechanism is exer-
cised. The fig 5 shows the architecture of the test environment.

Master

Slave

Slave

Slave

Fig. 5. Architecture of Test Environment



V. TEST AND MEASUREMENTS

Regarding test case scenarios, first, pure software
timestamping-based network is established and results are
collected through standard logging. In next section the results
from pure hardware timestamping-based solution are collected,
after that, a comparison between the software and hardware-
based solution is drawn in the context of offset from mas-
ter clock and precision of synchronisation process. In the
following sections, there are some CPU, I/O and network-
based stress tests are conducted on hardware-assisted time
synchronisation implementation. In order to present the results
in a coherent form, data fitting process with default Smoothing
Splines model from Matlab tool is used. In some graphs, we
found possible and necessary to present the raw data points
parallelly. So, where ever the data is shown in the description
window of the graph, it shows the raw data of the respective
slave.

1) Software Timestamping: In the software-based scenario,
network hierarchy is established using one Beaglebone device
acting as a master clock and three Beaglebone devices acting
as slave clocks in LAN based network.

Time (sec)

0 1000 2000 3000 4000 5000 6000 7000

O
ff

s
e

t 
fr

o
m

 M
a

s
te

r 
c
lo

c
k
 (

n
s
)

-800.000

-600.000

-400.000

-200.000

0

200.000

400.000

600.000

800.000

Slave 1

Slave 2

Slave 3

Fig. 6. Software Timestamping based Time Synchronization I

Time (sec)

3000 3010 3020 3030 3040 3050 3060 3070 3080 3090 3100

O
ff

s
e

t 
fr

o
m

 M
a

s
te

r 
c
lo

c
k
 (

n
s
)

×105

-1.8

-1.5

-1.2

-0.9

-0.6

-0.3

0

0.3

0.6

0.9

1.2

1.5

1.8

Slave 1

Slave 2

Slave 3

Fig. 7. Software Timestamping based Time Synchronization II

Figure 6 shows the offsets of slave clocks over the span of
approximately two hours, where the drift of slave clocks are
up to 2ms, and it can also be seen that clocks are showing
uncertain behaviour. Overall the offsets are between ± 0.5ms,
but due to an unknown error, there are sudden changes in offset
in all clocks, which may be the result of a change in speed of
the clock. If we take a closer look at the relatively stable part
of test duration, which is highlighted by a rectangular shape
in figure 6. Figure 7 is drawn on the basis of data taken from
stable synchronisation span of figure 6. In this graph, only
100 samples of data are considered, in order to visualise the
results more clearly. During whole span (approx 15 min) of
synchronisation, the offset remained under 300 microseconds.

Offset from Master Clock (ns)

-200.000 -150.000 -100.000 -50.000 0 50.000 100.000 150.000 200.000

N
u

m
b

e
r 

 o
f 

S
a

m
p

le
s

0

100

200

300

400

500

600

700

Slave1

Slave 2

Slave 3

Fig. 8. Precision of Software based PTP Implementations

Figure 8 shows the precision of clocks, where the number
of samples by specific clock are plotted between the range of
-200us to 200us. It can be seen that slave 1 have relatively
better precision as compare to other slaves clocks, where the
offset fluctuation can clearly be seen.

2) Hardware Timestamping: The figure 9 shows the syn-
chronisation of slave clocks over the period of twelve hours.
The synchronisation period is divided into two parts. In the
first part, the synchronisation network consists of three slaves
and one master clock, performing their roles for approximately
1.3 hours and in the second part of synchronisation period,
two slaves are removed from the network in order to analyse
the behaviour of synchronisation process with fewer slaves
communicating with the master clock. It can be seen that after
removing slaves form network, results form remaining slaves
are relatively stable and also remained stable for a long period.

The figure 10 shows the magnified version of first half of the
previous figure where three slaves are active in PTP network
and continuously synchronising their time with master clock
by every second and the accuracy of slave clocks is between
± 250ns. Figure 11 reflects the second half of figure 9, where
only one slave is correcting their offset with one master clock,
and the other two slaves are removed from the network. It can
be clearly seen that the results are remarkable with fewer slave
devices in a network. The offset is fluctuating between the -



Time (sec)

0 5.000 10.000 15.000 20.000 25.000 30.000 35.000 40.000

O
ff

s
e

t 
fr

o
m

 M
a

s
te

r 
C

lo
c
k
 (

n
s
)

-500

-400

-300

-200

-100

0

100

200

300

400

500

Slave 1

Slave 2

Slave 3

Fig. 9. Hardware Timestamping based Time Synchronization

50 to 50 ns, which is the highest accuracy achieved during all
kind of test scenarios.

Time (sec)

1000 1010 1020 1030 1040 1050 1060 1070 1080 1090 1100

O
ff

s
e

t 
fr

o
m

 M
a

s
te

r 
C

lo
c
k
 (

n
s
)

-500

-400

-300

-200

-100

0

100

200

300

400

500

Slave 1

Slave 2

Slave 3

Fig. 10. Hardware Supported Time Synchronization (Multiple Slaves)

Time (sec)

8000 8010 8020 8030 8040 8050 8060 8070 8080 8090 8100

O
ff

s
e

t 
fr

o
m

 M
a

s
te

r 
C

lo
c
k
 (

n
s
)

-300

-250

-200

-150

-100

-50

0

50

100

150

200

250

300

Data 

Slave 3

Fig. 11. Hardware Supported Time Synchronization (Single Slave)

The stability of clock can be noticed from figure 12, in
most of the results the offset is between ± 400ns, with four
PTP devices connected via LAN network. On the other hand,

Offset from Master Clock (ns)

-1000 -800 -600 -400 -200 0 200 400 600 800 1000

N
u

m
b

e
r 

o
f 

S
a

m
p

e
ls

0

50

100

150

200

250

Slave 1

Slave 2

Slave 3

Fig. 12. Precision of Hardware-based PTP Implementation

almost all slave clock have similar precision unlike software
timestamping base PTP network, where all slave clocks have
different behaviour in whole test case duration with similar
configuration and environment.

3) Comparison of Software and Hardware-based Synchro-
nization : The previous sections show that the hardware and
software based synchronisation not only differ in offset from
the master but also in precision. It can be seen in figure 13,
after plotting software and hardware-based measurements on
the same graph it is hard to distinguish that whether hardware
timestamping is equal to zero or not.

Time(sec)

0 50 100 150 200 250 300 350 400 450 500 550

O
ff

s
e

t 
fr

o
m

 M
a

s
te

r 
c
lo

c
k
 (

n
s
)

-60.000

-50.000

-40.000

-30.000

-20.000

-10.000

0

10.000

20.000

30.000

40.000

50.000

60.000

70.000

80.000

90.000

100.000

Slave Clock (Sw)

Slave Clock (Hw)

Fig. 13. Comparison of Software and Hardware based Synchronization

4) Hardware Assisted Time Synchronization under CPU
Load: It was expected that the hardware-assisted time syn-
chronisation would not have the prominent effect of CPU
stress on the accuracy because the PTP messages are times-
tamped at the MAC/ PHY layer. Figure 14 compares the three
slave with simulated CPU load by using the stress-ng tool.
The slave 1 shows the normal synchronisation period, slave
two devices are stressed using stress-ng with 50% utilisation
parallel to the synchronisation process, and similarly, slave
three is stressed with 100% CPU utilisation. In this test
case, no considerable change in the behaviour of devices are



noticed, all the slave offsets are fluctuating between -300 to
300 nanoseconds.

Time (sec)

0 10 20 30 40 50 60 70 80 90 100

O
ff

s
e

t 
fr

o
m

 M
a

s
te

r 
C

lo
c
k
 (

n
s
)

-1000

-800

-600

-400

-200

0

200

400

600

800

1000

Slave 1

Slave 2 (50%)

Slave 3 (100%)

Fig. 14. Hardware Assisted Time Synchronization under CPU Load

Offset from Master Clock (ns)

-1500 -1000 -500 0 500 1000 1500

N
u

m
b

e
r 

S
a

m
p

e
ls

0

50

100

150

200

250

300

350

400

Slave 1

Slave 2 (50%)

Fig. 15. Precision of Synchronization under CPU Load

We have tried to find out possible effects on the precision,
but there is no considerable change found in the precision of
the synchronisation. Figure 15 shows the comparison of two
slaves, slave one is not experiencing any simulated load and
slave two is stressed via 50% of CPU utilisation. There is little
change visible in the precision of clocks, but this observation
goes wrongs when we compare it with 100% load. So, it is
concluded that there is no change observed in the precision of
clock in current type of network hierarchy and environment. It
is expected, there might be considerable effects in more stable
PTP network hierarchy.

5) Hardware Assisted Time Synchronization under I/O
Load: In order to perform I/O based test case scenario,
I/O load type from stress-ng is used, which issues many
tiny synchronous I/O reads and writes on a temporary file
by utilising Linux aio interface. In this case, there is no
considerable change found in accuracy and precision. Figure
16 shows the result, where both slaves (with and without load),
are having the same accuracy.

Time (sec)

0 20 40 60 80 100 120 140 160 180 200

O
ff

s
e

t 
fr

o
m

 M
a

s
te

r 
C

lo
c
k
 (

n
s
)

-1000

-800

-600

-400

-200

0

200

400

600

800

1000

Slave 1

Slave 2 (I/O Load)

Fig. 16. Hardware Assisted Time Synchronization under I/O Load

6) Hardware Assisted Time Synchronization under Net-
work Load: The effects of network-based load highly depend
on the type of switches and routers are used in the network.
In this study, the network components used to connect the
slaves and master clock is not PTP supported. So, we need to
consider that the results shown here can be different if more
advanced networking devices will be used. In order to simulate
the network load, an extra Linux based device is connected to
the same network and iPerf tool is used to create a multicast
stream with specified bandwidth. Additionally, in figure 17
and 20, the absolute value of data is considered in order to
avoid the further entanglement.

Time (sec)

0 5 10 15 20 25 30 35 40 45 50

O
ff

s
e

t 
fr

o
m

 M
a

s
te

r 
c
lo

c
k
 (

n
s
)

×104

-2

0

2

4

6

8

10

12

14

16

18

Slave 1

Slave 2 (1Mb)

Slave 3 (5Mb)

Slave 4 (10Mb)

Slave 5 (20Mb)

Slave 6 (50Mb)

Fig. 17. Hardware Assisted Time Synchronization under Network Load

The figure 17 shows, slaves and their respective master
clock expose to network traffic between the range of 0Mb
to 50Mb. It can be seen that, as the amount of the network
traffic grows the offset from the master clock also rises. Let
assume that the 0-5Mb network load comes under the category
of Low network load and 10-50Mb is the High load. First, we
inspect the accuracy and precision in low network traffic and
then High network traffic.

Figure 18 shows the offset calculations of slaves under
low network load. During the synchronisation period of slave
1, there was no extra network traffic, and the accuracy was



Time (sec)

0 5 10 15 20 25 30 35 40 45 50

O
ff

s
e

t 
fr

o
m

 M
a

s
te

r 
c
lo

c
k
 (

n
s
)

-30.000

-25.000

-20.000

-15.000

-10.000

-5.000

0

5.000

10.000

15.000

20.000

25.000

30.000

Slave 1

Slave 2 (1Mb)

Slave 3 (5 Mb)

Fig. 18. Hardware Assisted Time Synchronization under Network Load (Low)

Offset from Master Clock (ns)

-30.000 -25.000 -20.000 -15.000 -10.000 -5.000 0 5.000 10.000 15.000 20.000 25.000 30.000

N
u

m
b

e
r 

o
f 

S
a

m
p

e
ls

0

200

400

600

800

1000

1200

1400

1600

1800

2000

Slave 1 (1 Mb)

Slave 2 (5 Mb)

Fig. 19. Precision of Time Synchronization under Network Load (Low)

around ± 200 ns. On the other hand, while applying simulated
network traffic of 1Mb and 5Mb on slave 2 and slave 3 the
offset was remarkably advanced up-to ± 5us and ± 15us.
The precision of both slave clocks is also dissimilar, as it
can be seen in figure 19 where slave 1 exposed to 1Mb of
network traffics, most to the time offset was between the
normal range as compare to slave with network load but there
are some measurements where offset went up to ± 5000ns. On
the other hand, the slave with 5Mb network traffic is having
very low precision and very uncertain behaviour, where the
measurement samples are spread over the range of - 30000 to
30000ns.

In figure 20, three slaves are experiencing high network
traffic, where the accuracy is reached similar to software
timestamping based solution. The slave 4-5 which are having
10Mb and 20Mb of network traffic load, the offsets of these
clocks reached up to ± 40000ns. On the other hand slave with
50Mb of network traffic have the worst accuracy. The figure 21
confirms that, as the bandwidth consumptions of UDP stream
increases, the accuracy and precision of the clocks decreases.

Time (sec)

0 5 10 15 20 25 30 35 40 45 50

O
ff

s
e

t 
fr

o
m

 M
a

s
te

r 
c
lo

c
k
 (

n
s
)

×104

-2

0

2

4

6

8

10

12

14

16

18

Slave 4 (10Mb)

Slave 5 (20Mb)

Slave 6 (50Mb)

Fig. 20. Time Synchronization under Network Load (High)

Offset from Master Clock (ns)

-150.000 -120.000 -90.000 -60.000 -30.000 0 30.000 60.000 90.000 120.000 150.000

N
u

m
b

e
r 

o
f 

S
a

m
p

e
ls

0

200

400

600

800

1000

1200

Slave 1 (10 Mb)

Slave 2 (20 Mb)

Slave 3 (50 Mb)

Fig. 21. Precision of Time Synchronization under Network Load (High)

VI. CONCLUSION

In software-based PTP synchronisation network, the average
offset of slave clocks remained between ± 0.5ms, but there are
some timespans where the offset of clocks reached to 2ms with
multi-slave synchronisation model. Beside offset, the precision
of slave clocks was also dissimilar with same configuration
and communication medium.

In hardware timestamping based PTP implementations, the
long-term results were very promising, where the accuracy
of clock reached to approx 50ns. Overall in short-term mea-
surements and random test cases, the accuracy of 200ns was
frequently achieved. It is also observed that in a multi-slave
synchronisation scenario, the slaves showed similar behaviour
in term of accuracy and precision.

The tests with CPU and I/O based load do not show any no-
ticeable change in accuracy of the clock on a hardware-based
solution. There are also chances that the changes remained
undetected due to smaller in scale. On the other hand, the
test case scenarios with alien network traffic showed striking
results, where the accuracy went to the lowest standard as com-
pare other test case scenario including software timestamping
based solutions.

Overall, the difference between the hardware and software
based timestamping was significant. In load case scenarios,



apparently network traffic based tests showed some consider-
able effect. Expected effects from the CPU and I/O based tests
either did not appear or we remained unable to detect them.

A. Improvements and Future Work

The tools used to simulate particular kind of load on PTP
environment does not reflect any real-world patterns of the
load, and it is possible with applying real-world resource
exhausting application may show the different results. For
example, there can be different types of network traffics that
might affect the PTP setup in a different manner.

As discussed in earlier sections, the network component
used in the PTP hierarchy establishment are unaware of PTP
network, and there can be undetected effects on PTP network.
Further study can be done in this area by comparing the
results with PTP supported network component. The results
of the simulated load based test case scenarios are only from
hardware assisted PTP solution, there might be different results
in a software-based solution.

REFERENCES

[1] IEEE Std 1588 -2002, IEEE Standard for a Precision Clock Synchro-
nization Protocol for Networked Measurement and Control Systems.

[2] IEEE Std 1588-2008 (Revision ofIEEE Std 1588-2002), IEEE Standard
for a Precision Clock Synchronization Protocol for Networked Measure-
ment and Control Systems, July 24, 2008.

[3] R. Cochran and C. Marinescu, “Design and implementation of a ptp
clock infrastructure for the linux kernel,” in Precision Clock Synchro-
nization for Measurement Control and Communication (ISPCS), 2010
International IEEE Symposium on, Sep. 27Oct. 1, 2010, pp. 116 121.

[4] R. Cochran, C. Marinescu and C. Riesch. “Synchronizing the Linux
System Time to a PTP Hardware Clock,” Precision Clock Synchro-
nization for Measurement Control and Communication (ISPCS), 2011
International IEEE Symposium on 12-16 Sept. 2011.

[5] K. Correll, N. Barendt, and M. Branicky. “Design Considerations for
Software Only Implementations of the IEEE 1588 Precision Time
Protocol.” in Proceedings of the IEEE 1588 Conference, Zurich, October
2005. vol. 1588, pp. 1115

[6] P. Ohly, D. N. Lombard, and K. B. Stanton, “Hardware assisted
precision time protocol. Design and case study.” in Proceedings of LCI
International Conference on High-Performance Clustered Computing.
Urbana, IL, USA: Linux Cluster Institute, 2008.

[7] A. Dreher and D. Mohl. “Precision Clock Synchronization IEEE 1588,”
White Paper by Hirschmann Automation and Control GmbH. Available:
http://www.industrialnetworking.com/pdf/Hirschmann IEEE 1588.pdf.
[Accessed Aug 30, 2018]

[8] J.Ferrant, et al., “Synchronous Ethernet and IEEE 1588 in Telecoms:
Next Generation Synchronization Networks.” Wiley-ISTE, Jun 2013.

[9] D. W. Allan et al., “Precision oscillators: Dependence of frequency on
temperature, humidity and pressure. ” in Proceedings of the 1992 IEEE
Frequency Control Symposium.

[10] J. Eidson. “A tutorial on IEEE-1588 Standard for a Precision Clock Syn-
chronization Protocol for Networked Measurement and Control Systems.
” Tech. rep. Agilent Technologies, Inc, Oct. 2005. [Online]. Abailable:
https://www.nist.gov/sites/default/files/documents/el/isd/ieee/tutorial-
basic.pdf. [Accessed Aug 30, 2018]

[11] “AN-1838 IEEE 1588 Boundary Clock and Transparent Clock
Implementation Using the DP83640.” Tech. rep: SNLA104A by
Texas Instruments Apr. 2013. Available: http://www.ti.com/lit/an/snl
a104a/snla104a.pdf.

[12] G. M. Garner, Overview and Timing Performance of IEEE Performance
of IEEE 802.1AS,” ISPCS 2008. Available: http://www.ieee802.org/1/
files/public/docs2008/as-garner-mjt-ISPCS-2008-slides-0908.pdf.

[13] Steve T. Watt, S. Achanta, H. Abubakari, E. Sagen, Z. Korkmaz and
H. Ahmed. “Understanding and Applying Precision Time Protocol.” in
Proceedings of the IEEE Conference on Power and Energy Automation
Conference, Jeddah, 2014, pp. 23.

[14] Hyuntae Cho,Youngwoo Jin and Jusik Heo, ”Implementation of a PTP
Bridge to Extend IEEE 1588 to Zigbee Networks”, Computer and In-
formation Technology (CIT), 2010 IEEE 10th International Conference
on 29 June-1 July 2010

[15] Linux Kernel Documentation, Timestamping Control Interfaces. [On-
line]. Available: https://www.kernel.org/doc/Documentation/ network-
ing/timestamping.txt. [Accessed Aug 30, 2018]

[16] Yocto Project (YP), “Yocto Project Documentation.” [Online]. Available:
https://https://www.yoctoproject.org/docs. [Accessed Aug 30, 2018]


