

Design and Development of a Mechatronic Transradial Prosthesis

J.Fasoulas^{*}, M. Sfakiotakis⁺, M. Petousis^{*},

S. Kalantzis* and G. Kampourakis*

*Dept. of Mechanical Engineering, *Dept. of Electrical Engineering, Technological Educational Institute (T.E.I.) of Crete Heraklion, Greece

Control Systems and Robotics Laboratory

Technological Educational Institute of Crete

Outline of the presentation

□ Explain what is a Transradial Prosthesis

□ Classification of Transradial Prosthesis

□ Present the designed transradial prosthesis

□ Early experiments

□ Future Work

Transradial level of ambutation

Forequarter

Amputation

Transhumeral

Transradial

(below elbow)

(above elbow)

The most common causes of upper limb amputation in are:

- Accidents
- Infection or burns
- Disease
- Conditions present at birth

The loss of a limb is one of the most **psychologically**, **physically** and **financially** devastating events that can happen to a person.

- The **quality of life** is reduced.
- In many cases the living and the working environment must be modified.
- In many times they depend on **other people's** help.

Classification of the Transradial prosthesis

Transradial Prosthesis can be classified into the following main categories:

(a) The Cosmetic Prosthesis

(b) The Body Powered or Cable Operated Limbs

Control Systems & Robotics Lab T.E.I. Crete.

The Designed Transradial Prosthesis

- □ 5 digits
- □ 13 joints
- □ 6 actuators
- □ 6 Force Sensing Resistors (FSR)
- □ 1041gr = 503gr +538gr
- □ Compliant behavior
- □ Open Close the hand in 2 sec
- Each fingertip can exert forces up to 2N
- □ The hand can hold firmly objects up to 5 kg

Mid-size Human forearm 1400gr Mid-size Humanhand 500gr <u>In total about 2Kg</u>

Control Systems & Robotics Lab T.E.I. Crete.

General Description of the Hand

Control Systems & Robotics Lab T.E.I. Crete.

The fingers with the silicone pads and the FSR sensors

The opposable thumb

The palm of the hand

Micro Linear servomotors

The fore-arm design

Total = 538gr

Control Systems & Robotics Lab T.E.I. Crete.

The manufactured parts of the forearm

Control Systems & Robotics Lab T.E.I. Crete.

Experimental results for hand gestures

- Experiments for gesture patterns and stable grasps
- An electronic prototype board was designed in order to interface the FSR sensors and the actuators with an Arduino Mega microcontroller.

Experimental results for grasping objects

 Experiments: everyday objects with different shape, size and weight from 50gr to 1200gr

Power Grasp

Lateral prehension

Three-finger grip

Precision grip

Control Systems & Robotics Lab T.E.I. Crete.

- We became familiar with the design and development of a mechatronic transradial prosthesis and presented experimental results
- □ Future work will address the **integration** of electronics and the batteries into the forearm case along with **EMG** to the remaining limb
- □ Improvement of the **control algorithm** and **test** the prosthesis on an amputee.

This work was supported by the first internal research funding program of T.E.I. Crete Research Committee.

Control Systems & Robotics Lab T.E.I. Crete.

Thank you !

Control Systems & Robotics Lab T.E.I. Crete.