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Abstract—This paper presents the design and control of a low
cost cart-pendulum platform, developed for educational purposes.
The cart-pendulum is one of the most popular laboratory experi-
ments for teaching and demonstrating underactuated mechanical
systems and non-linear control methods, but the cost of commer-
cially available units is typically quite high. Our implementation
was built around a linear slide mechanism, salvaged from an old
dot-matrix printer, which employs cable transmission to actuate
the cart via a DC-motor, driven by a current-control servo
amplifier. The platform is outfitted with high-precision optical
encoders to measure the pendulum’s angle and the cart’s position.
Following the development of the system’s equations of motion,
we present a variety of stabilizing controllers in both the upright
(inverted pendulum) and the downward (gantry) configurations.
A Rapid Control Prototyping approach, based on the WinCon
real-time software extension of Matlab/Simulink, is adopted for
implementation of these controllers on the developed platform.
The experimental results are in very good agreement with those
obtained in simulation from a virtual model of the system, which
is supplied as an accompanying student educational tool.

Index Terms—Cart-Pendulum, State-Space Modelling, Pole
Placement, LQR, Mechatronics, Robotics

I. INTRODUCTION

The cart-pendulum is a very popular laboratory experi-
ment for teaching and demonstrating a variety of concepts
and techniques in control engineering. In its most typical
implementation, the system involves a freely-swinging pole
(pendulum) whose pivot point is mounted on a cart that can
be driven along a horizontal tract. This setup represents an
underactuated mechanical system with two degrees of freedom
(corresponding to the translation of the cart and the rotation
of the pendulum) and one control input (the force applied to
the cart). The cart-pendulum exhibits two equilibrium points:
one with the pendulum hanging vertically (stable equilibrum)
and one with the pendulum upright (unstable equilibrium).
This characteristic allows studying control tasks of progressive
difficulty, depending on the students’ expertise. For example,
operation of the system in the stable configuration emulates a
translational gantry crane system, which involves the design of
feedback controllers to improve the transient performance by
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suppressing intense pendulum oscillations during cart motion.
The control task becomes more challenging when balancing
the pendulum in its inverted position, whereby linear state
feedback regulators are usually employed to reject external dis-
turbances. Of particular interest is also the swingup problem,
i.e., actively raising the pendulum from its resting equilibrium
to the upright position; this task is often accomplished through
energy shaping methods. Additional parameters to consider for
practical implementations include the finite length of the cart
tract, the limitation of the control input that can be applied to
the system, the unavailability of velocity measurements, and
the effect of friction.

Apart from educational purposes, the cart-pole system has
also also been employed as a benchmark for testing new con-
trol techniques, as well as an analogous system for studying a
variety of associated problems such as industrial gantry cranes,
two-wheeled personal transportation mechanisms [1], missile
guidance, vehicle rollover stabilization [2], human gait and
balance [3], and friction compensation methods [4].

A number of companies producing educational control
model plants offer cart-pendulum systems [5]–[7], but their
cost can be quite high. In the present paper, we describe a low
cost implementation of the cart-pendulum system, utilizing the
linear slide mechanism from a dot-matrix printer. The platform
is outfitted with high resolution incremental encoders and a
linear servo amplifier that drives the DC-motor generating the

Fig. 1: The developed cart-pendulum system, shown balancing in the
inverted pendulum configuration.
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Fig. 2: Overall architecture of the developed cart-pendulum platform.

cart actuation force. Control algorithms are deployed using a
Rapid Control Prototyping system based on the WinCon real-
time software extension of Matlab/Simulink. A virtual model
of the physical platform, which integrates the system’s full
nonlinear motion equations with a visualization module, is
provided as an accompanying educational tool for students.

Section II describes the design and hardware implementa-
tion of the physical cart-pendulum platform, whose dynamic
model is presented in Section III. Based on this model,
stabilizing controllers for the system’s two main configurations
are designed in Section IV, while the associated experimental
results are presented in Section V. Finally, conclusions and
suggestions for further work are provided in Section VI.

II. CART-PENDULUM PLATFORM

A schematic overview of the complete cart-pendulum plat-
form, developed for educational and research and purposes,
is shown in Fig. 2. The platform consists of the cart and
pendulum mechanism, a power supply unit, a servo-drive
amplifier, a signal interface card and a PC equipped with a
data acquisition and control board (DAQ&C).

The cart-pendulum was built around a linear slide mecha-
nism, salvaged from an old dot-matrix printer (Texas Instru-
ments OMNI-800). The linear slide employs a cable transmis-
sion, driven by a DC-motor (IMC 151-20-1) with an embedded
incremental encoder (see Fig. 3), that is used to track the
position of the cart with a resolution of 0.0526 mm. A custom
base, fabricated in ABSplus material with a 3d-printer, was
designed for mounting on the carriage the swivelling pole
(an aluminium rod) via dual ball bearings, using an 1024 cpr
incremental encoder to measure its angular displacement. The
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Fig. 3: Details of the cart-pendulum platform.

setup also includes a terminal switch on one end of the
linear slide, used as a reference point for the cart position
measurement over the 30 cm track length. A linear servo
amplifier (Faulhaber LC3002), powered by a 24 V supply and
operated in current control mode, drives the motor with the
desired torque, specified through a ±10 V voltage signal va
that is generated by a 12-bit analogue output channel of the
employed DAQ&C board (National Instruments NI-6024E).

In our setup, the controllers are deployed as Simulink
models running under the WinCon real-time software ex-
tension, which allows for automatic code generation from
a block diagram description of the controller, as well as
high sampling rates to limit performance degradation due to
discretization. Other similar Rapid Control Prototyping (RCP)
schemes can also be implemented, based on, e.g., Simulink’s
Real Time Windows Target or LabView’s Real-Time module.
The platform can also be readily interfaced with low cost
embedded control units, such as the one described in [8].

III. MODELLING

A. Dynamic equations of motion

In developing a dynamic model for the cart-pendulum
system, we consider a rigid homogeneous rod (pendulum)
attached by a passive revolute joint to a cart that slides on
a horizontal track, initially ignoring the cable/pulley trans-
mission system and the motor dynamics (Fig. 4). Denoting
as F the actuating force applied to the cart, the nonlinear
equations that describe the dynamics of the system may be
derived through a Lagrangian approach as:(

(mc +mp) Ip +mcmp`
2 +m2

p`
2sin2θ

)
ẍc =(

Ip +mp`
2
)

(F − Ffr,c(ẋc)) +m2
pl

2g sin θ cos θ

+
(
m2

p`
3 + Ipmp`

)
θ̇2 sin θ +mp` cos θFfr,p(θ̇) (1)

and (
(mc +mp) Ip +mcmp`

2 +m2
p`

2sin2θ
)
θ̈ =

−mp` cos θ (F − Ffr,c(ẋc))− (mc +mp)Ffr,p(θ̇)

−m2
p`

2θ̇2 cos θ sin θ − g (mc +mp)mp` sin θ (2)

Here, mc is the effective mass of the cart, mp is the mass
of the pendulum rod, g the gravitational constant, ` the half
length of the rod, Ip = mp`

2/3 the pendulum’s moment of
inertia with respect to its center of mass, xc the position of the
cart, and θ the angle of the pendulum. In addition, Ffr,p(θ̇)
and Ffr,c(ẋc) denote the friction of the pendulum and the cart
respectively, described as a function of the respective velocity
v using the following generic model:

Ffr(v) =
(
Fc + (Fbrk − Fc) e

(−cv|v|)
)

sgn (v) + fvv (3)

where Fc (Coulomb), Fbrk (stiction), fv (viscous coefficient)
and cv (Stribeck coefficient) are the friction parameters as
defined in [9].



Pendulum

Linear guide

+

+
Cart

2`
✓

F

DC motor

Drive 
pulley

Follower 
pulley

+
xc

g

Ffr,p

Ffr,c

Fig. 4: Cart-pendulum schematic.

B. Cart effective mass

To analyse the effect of the platform’s cable drive trans-
mission, we consider the movement along the horizontally
oriented linear tract of the cart without the pendulum. A
simplified model for the dynamics of this system is:

m0ẍc = F − Ffr,c(ẋc)−
Jfp
r2fp

ẍc −
Jdp
r2dp

ẍc −
Jm
r2m

ẍc (4)

where m0 is the mass of the cart, F the force applied to
the cart and Ffr,c(ẋc) the total nonlinear friction of the cart.
In addition, (rdp, Jdp), (rfp, Jfp) and (rm, Jm) respectively
denote the radius and inertia moment of the drive pulley
(located on the motor’s shaft), the follower pulley, and the
motor’s armature/shaft. Denoting as mfp, mdp the masses of
the pulleys, their moment of inertia can be calculated as:

Jfp =
1

2
mfpr

2
fp and Jdp =

1

2
mdpr

2
dp (5)

Rearranging (4), the cart’s motion equation can be written as:

mcẍc = F − Ffr,c(ẋc) (6)

where mc is the total effective mass of the cart:

mc =

(
m0 +

Jfp
r2fp

+
Jdp
r2dp

+
Jm
r2m

)
(7)

We may therefore conveniently use mc as defined above in
(1), (2), to account for the cart’s increased inertia arising due
to the power transmission mechanism of the physical platform.

C. Parameter specification

The numerical values of the system model parameters
for the developed platform are summarised in Table I.
These were mostly obtained in a straightforward manner,
i.e., weighing/measuring the various components to calculate
their mass/dimensions, or from the manufacturers’ data-sheets.
Additional tests were carried out to cross-validate the motor’s
torque constant Kt (using the in-situ measurement method
described in [10]) and the servo-drive amplifier’s gainKa.

The cart friction parameters were identified through a series
of tests conducted with the pendulum rod removed from the
system, involving a variety of sinusoidal force inputs that were
applied to the cart. The acquired experimental data were then
fitted to the model of (6), and the resulting friction parameters

TABLE I: Parameters of the system

Parameter Symbol Value Units in SI

cart mass m0 0.18 Kg
cart effective mass mc 0.8579 Kg
pendulum mass mp 0.125 Kg
pendulum length 2` 0.3365 m
pendulum moment of inertia Ip 1.2× 10−3 Kg ·m2

drive pulley radius rdp 9.5× 10−3 m
follower pulley radius rfp 9.5× 10−3 m
drive pulley inertia Jdp 1.842× 10−7 Kg ·m2

follower pulley inertia Jfp 2.072× 10−7 Kg ·m2

drive pulley mass mdp 4.1× 10−3 Kg
follower pulley mass mfp 4.6× 10−3 Kg
motor torque constant Kt 0.075096 N /A
motor shaft radius rm 6.35× 10−3 m
motor inertia Jm 2.716× 10−5 Kg ·m2

servo-drive amplifier gain Ka 0.37811 A /V

−2

0

2

F
[N

]

 

 

Simulation
Experimental

0

0.01

0.02

0.03

x
c

[m
]

 

 

Simulation
Experimental

0 5 10 15 20 25 30

−0.1

0

0.1

time [sec]

ẋ
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Fig. 5: Cart’s nonlinear friction simulated results compared to exper-
imental data. The graphs show the input signal (applied force), and
the cart’s position and velocity.

are summarized in Table II. Note that, in order to increase
the model’s fidelity, two different such parameter sets were
identified, depending on the cart’s motion direction (i.e. the
sign of ẋc). The results presented in Fig. 5 highlight the match
between the thus specified model and the experimental data.

In order to calculate the nonlinear friction parameters of
the pendulum, the latter was mounted on the cart, and a free

0 10 20 30 40

−0.05

0

0.05

x
c

[m
]

 

 

Experimental
Simulation

0 10 20 30 40

−1

−0.5

0

0.5

1

time [sec]

θ
[r
ad

]

 

 

Experimental
Simulation

Fig. 6: Pendulum free response data, showing the experimental results
against the nonlinear friction simulation.



TABLE II: Cart’s nonlinear friction parameters

Parameter Symbol Value Units in SI

Positive cart velocity (ẋc > 0)
viscous friction coefficient f+

v,c 5.6864 N · s ·m−1

Coulomb friction F+
c,c 1.8 N

static friction F+
brk,c 5.5968 N

Stribeck velocity coefficient c+v,c 100 s ·m−1

Negative cart velocity (ẋc < 0)
viscous friction coefficient f−

v,c 6.1403 N · s ·m−1

Coulomb friction F−
c,c 1.79852 N

static friction F−
brk,c 6.4246 N

Stribeck velocity coefficient c−v,c 100 s ·m−1

cart linearised
friction coefficient b 5.91 N · s ·m−1

TABLE III: Pendulum’s nonlinear friction parameters

Parameter Symbol Value Units in SI

viscous friction coefficient fv,p 3.5× 10−4 N · s · rad−1

Coulomb friction Fc,p 6.9× 10−4 N
static friction Fbrk,p 8× 10−4 N
Stribeck velocity coefficient cv,p 50 s · rad−1

pendulum linearised
friction coefficient k 3.507× 10−4 N · s · rad−1

response test was performed. The pendulum rod was released
from an initial angle, and the system’s motion was recorded
until the rod came to a stand-still. The pendulum’s nonlinear
friction parameters were identified by fitting experimental data
from multiple such runs to the generic friction model (3), with
the obtained numerical values summarized in Table III. As
indicated in Fig. 6, the thus specified friction model allows
for a very good agreement between the simulation results and
the experimental data. It is also noted that the model can also
accurately predict the, essentially negligible, motion of the
cart during this experiment, providing further validation for
the identified values of the cart’s friction parameters.

D. Virtual model of the cart-pendulum system

As a complementary educational tool, a virtual model of
the cart-pendulum system was developed in Simulink. This
integrates the system’s full nonlinear motion equations with a
visualization module based on a CAD model of the physical
platform. The virtual model allows for students to familiarize
with the system and design different control strategies for
various operation scenarios in a safe and convenient manner,
prior to implementation on the physical hardware.

IV. CONTROL DESIGN

The system’s nonlinear equations of motion exhibit two
equilibria in relation to the angular position of the rotating
rod, namely a stable equilibrium for θ = 0 (pendulum hanging
downwards) and an unstable one for θ = π (pendulum
upright). Linear feedback control laws can be designed to
regulate the pendulum’s angular position in these equilibria
using of a linearised state-space model of the system, whose
derivation is presented below.

Fig. 7: Visualization of the physical cart-model platform in Simulink.

A. Model linearisation

The linearisation process is hindered by the friction force
terms that appear in (1) and (2), due to the presence of sgn(v)
in (3). Therefore, a linear approximation of (3) with a first-
order polynomial was taken, converting to bẋc and kθ̇ the
friction for the cart and pendulum, respectively (see Tables II
and III for their numerical values).

Defining the system’s state vector as x = [xc ẋc θ θ̇]T, the
stable equilibrium point corresponds to x̄ = [∗ 0 0 0]

T with
an associated control input force of F̄ = 0. In this case (gantry
crane configuration), the linearised state-space description of
the system, obtained through Jacobian linearisation, becomes:

ẋ = Ax + Bu (8)
y = Cx (9)

where, denoting as q = (mc +mp) Ip +mcmp`
2 :

A =


0 1 0 0

0
−(Ip+mp`

2)
q b

m2
p`

2

q g
mp`
q k

0 0 0 1

0
mp`
q b

−(mc+mp)mp`
q g

−(mc+mp)
q k



B =


0

(Ip+mp`
2)

q

0
−mp`

q

 , C =

[
1 0 0 0
0 0 1 0

]
(10)

Here, A, B, and C respectively denote the system, input, and
output matrices, u = F is the control input (applied force)
and y the output vector.

For the linearisation in the upright position (inverted pen-
dulum configuration), instead of the angle θ, it is convenient
to use as state variable the angular deviation φ = θ − π of
the pendulum from the upper vertical position. In this case,
noting that φ̇ = θ̇ and φ̈ = θ̈, the state variable vector becomes
x = [xc ẋc φ φ̇]T. Linearization about the equilibrium point
of x̄ = [∗ 0 0 0]

T and F̄ = 0, then eventually yields the
following state-space matrices:



A =


0 1 0 0

0
−(Ip+mp`

2)
q b

m2
p`

2

q g
−mp`

q k

0 0 0 1

0
−mp`

q b
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B =


0

(Ip+mp`
2)

q

0
mp`
q

 , C =

[
1 0 0 0
0 0 1 0

]
(11)

B. State feedback control

For both operation points of the system, the controllers
should be able to compensate for external disturbances, re-
turning the pendulum to its equilibrium in a short time and
without intense oscillations. In addition, we consider here the
problem of regulating the cart’s position along the track. The
control strategy chosen to address these objectives is through
the augmented state feedback approach shown in Fig. 8. Here,
r denotes the reference cart position, while w is a new state
variable, corresponding to the cart position error integral:

w =

∫ t

0

(r (τ)− xc (τ))dτ or, equivalently ẇ = r−xc (12)

The extended system’s dynamics may then be expressed as:

ẋ1 = A1x1 + B1u+ H1r (13)
y1 = C1x1 (14)

where

A1 =


0
0

A 0
0

−1 0 0 0 0

B1 =

 B

0

H1 =


0
0
0
0
1


C1 =

[
C

0
0

]
x1 =

[
x
w

]
(15)

Specifying the control signal as u = −Kx1, the state space
description of the feedback system shown in Fig. 8 is then:

ẋ1 = (A1 −B1K1)x1 + H1r (16)
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Fig. 8: Augmented full state feedback controller.

where K = [k1 k2 k3 k4 ki] is the state feedback gains
vector. A prerequisite for arbitrarily specifying all eigenval-
ues of the feedback system matrix (A1 −B1K1) through
appropriate choice of K is that the (A1,B1) pair meets the
criterion of full controllability, i.e., the system’s controllability
matrix G , defined as:

G =
[
B1 A1B1 A2

1B1 · · · An−1
1 B1

]
(17)

has rank(G) = n, where n = 5 is the system’s order.
Under this assumption, the most commonly used methods to

specify K are pole placement and Linear Quadratic Regulator
(LQR) designs, both of which are discussed next.

V. EXPERIMENTAL RESULTS

This Section presents the controller implementation on the
physical cart-pendulum system. To demonstrate the platform’s
versatility, we consider the augmented full state feedback strat-
egy for the system in both the gantry crane and the inverted
pendulum configurations, using both pole placement and LQR
methods to specify the control gains. The experimental results
are compared to those obtained in simulation, to validate the
model’s accuracy in predicting the system’s response.

A. Control implementation specifics

Initially, we discuss a number of practical issues, arising
from the characteristics of the system’s different components,
that needed to be addressed for practical deployment of the
designed controllers on the hardware.

1) Actuation force: The models and controllers developed
to this point consider as input to the system the force F applied
to the cart. In the physical platform, this actuation force is
generated through the DC motor, and can be calculated as:

F =
τ

rdp
(18)

where rdp is the drive pulley radius, and τ is the motor’s
torque, obtained from:

τ = Ktim = KtKava (19)

Here, Kt is the torque constant and im the current of the motor.
The latter is regulated by the linear servo-drive unit according
to the amplifier’s gain Ka and the command voltage signal va.
By combining (18), (19) we obtain the relation between the
desired force input and the command signal to the amplifier:

F =

(
KtKa

rdp

)
va (20)

Since the servo-drive amplifier is capable of supplying up to
±2 A to the motor, there is a corresponding limit of ±15 N for
the control force that can be applied to the cart. This limitation
is also included in the simulation model of the system through
a simple saturation function.



2) Velocity estimation: The linear controllers of Section
IV-B require that all four state variables in x are available
for use in the feedback laws. However, this is not directly the
case for the physical platform, since the incremental encoders
measure the positions xc and θ. This necessitates an online
estimation of ẋc and θ̇ from the position measurements, here
derived via the method of algebraic derivative estimation [11].
Following this method, the pendulum’s angular velocity was
obtained by the following integral:

θ̇ =
1

T 3

T∫
0

(6τ − 12T )θ (t− τ) dτ (21)

Selecting an integration window of T = 15 ms, the above
expression was implemented as a finite impulse response (FIR)
digital filter with a sampling time of 0.5 ms. The same ap-
proach was employed for the cart velocity estimation. Overall,
the algebraic method of velocity estimation with the above
parameter values improved considerably the performance of
the system with regard to noise suppression.

B. Pole placement design

Typically, in pole placement designs the desired eigenvalues
of the closed-loop system for full state feedback are specified
so that the system’s behaviour is determined by dominant
poles. According to this approach, two of the cart-pendulum
system’s eigenvalues are defined as dominant conjugate com-
plex poles, placing the other three poles on the real axis
at a sufficient distance from the complex pole pair. Thus,
considering the closed-loop system of Fig. 8, the desired 5th
order characteristic polynomial will be of the following format:

(s− p3) (s− p4) (s− p5)
(
s2 + 2ζωns+ ω2

n

)
(22)

where ζ the damping coefficient and ωn the natural frequency
associated with the desired dominant complex poles, i.e.:

p1,2 = −ζωn ±
(
ωn

√
1− ζ2

)
i (23)

The three real poles are then selected so that they lie further
away from p1,2 (i.e., pj >> −ζωn, j = 3, 4, 5) in order to
avoid adversely affecting the closed-loop response, while also
taking into account control input limitations. To demonstrate
this method, we consider here the gantry crane configuration
of the cart-pendulum system through the linearised dynamics
of (8)-(10) and design using pole placement an augmented
state feedback controller to allow for cart position control
with suppressed pendulum oscillations. As a first step, utilizing
Matlab’s ctrb, rank functions, we confirm that the control-
lability matrix (17) has rank(G) = 5, i.e., the system meets
the full controllability criterion. Subsequently, we specify a
desired settling time of ts = 2.0 s with a 2% maximum over-
shoot, yielding a corresponding damping coefficient ζ = 0.78
and natural frequency ωn ≈ 4/ (ζ ts) = 2.565 rad / s for the
desired complex conjugate eigenvalues. The remaining three
real poles are then selected after some experimentation with
the simulation model. Using Matlab’s place function, the
thus specified desired eigenvalues {−6,−13,−14,−2± 1.6i}
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Fig. 9: Experimental results for the control of the cart-pendulum
system in the gantry crane configuration, shown against simulations
with the full nonlinear model of the system.

of the feedback system matrix A1 − B1K, yielded the
following gain vector K:

K =
[

134.67 45.15 −55.60 4.09 −146.18
]

Experimental results for the system’s response under this
controller, involving a square-wave reference cart position
signal, are shown in Fig. 9, along with equivalent simulation
results. It can be seen that the cart tracks the desired position
with a settling time of about 2 s and minimal steady-state
error, while the pendulum deviates less than 0.05 rad from
its equilibrium, exhibiting the same settling time as the cart.
Moreover, it is noted that the simulation accurately predicts
the system’s response, thus highlighting its effectiveness as a
control design tool.

C. Linear quadratic regulator design

The LQR design yields an optimal controller that minimizes
the following infinite horizon quadratic cost function:

J =

∫ ∞
0

(
xTQx + uTRu

)
dt (24)

where Q and R are symmetric positive-definite cost matrices,
respectively associated with the system state errors and the
control effort. Most often, Q and R are defined as positive
diagonal matrices, where the Qii elements penalize the relative
error in individual state variables, while Rii elements penalize
actions in ui. For (8), the optimized gain values in the feedback
law u = −Kx are derived from:

K = R−1BTP (25)

where P is found by the solution of the Riccati algebraic
equation:

ATP + PA− PBR−1BTP + Q = 0 (26)

Alternatively, one can use Matlab’s lqr function, which
conveniently calculates K given the A, B, and Q, R matrices.
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Fig. 10: Experimental results for the control of the cart-pendulum
system in the inverted pendulum configuration, shown against simu-
lations with the full nonlinear model of the system.

Here, LQR is employed to design a controller that sta-
bilizes the pendulum in its inverted configuration, whilst
tracking a desired cart position, as per Fig. 8. Consider-
ing the state space formulation (16) with the corresponding
linearised dynamics of (11), it can be confirmed that the
(A1,B1) pair, as for the gantry configuration, exhibits the
property of full controllability. Using Matlab’s lqr function,
for Q = diag{200, 0, 500, 0, 1300} and R = [0.35], the
optimum feedback gain values are then calculated as:

K =
[
−67.25 −38.33 95.73 13.07 60.94

]
The eigenvalues of the closed loop system matrix A1−B1K
are then found to be {−11.7± 8.3i,−1.8± 1.9i,−2.1}, con-
firming the system’s stability. Note that the LQR design yields
one real and two pairs of complex eigenvalues.

The experimental results, shown in Fig. 10, indicate that
the controller is effective in stabilizing the pendulum, while
tracking the desired cart position square-wave signal. As is
often the case with practical implementations of the inverted
pendulum system, the cart response exhibits a steady-state
oscillation of about ±5 cm, mainly attributed to the non-
linear effects of friction. The maximum pendulum deviation
from its equilibrium position is less than 0.04 rad for this
experiment. Regarding the simulation results, it can be seen
that, although not perfect, the model successfully captures all
main characteristics of the system’s response also in this case.

Finally, Fig. 11 presents experimental results demonstrat-
ing how the LQR controller effectively counteracts external
disturbances (introduced by manually tapping the rod) during
balancing of the inverted pendulum.

VI. CONCLUSIONS

We have presented a cart-pendulum plant offering perfor-
mance and robustness directly comparable to that of commer-
cially available units, while being considerably more afford-
able. The physical plant is complemented by a virtual model to
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Fig. 11: Experimental results demonstrating the rejection of external
disturbances during balancing in the inverted pendulum configuration.

provide a complete and versatile platform for demonstrating,
teaching, and investigating control-related topics of varying
degrees of complexity. This was demonstrated via experiments
and corresponding simulations for two different designs of an
augmented state feedback scheme, to allow cart positioning
while minimizing pendulum deviations from its equilibrium
for both the gantry crane and the inverted pendulum configu-
rations. Although not presented here, the swingup manoeuvre
has also been successfully implemented on this platform.

The developed cart-pendulum has been successfully em-
ployed as an engaging teaching aid in the context of several
undergraduate and postgraduate courses taught at the Tech-
nological Educational Institute of Crete (Greece), related to
dynamics, control, embedded systems and robotics. Future
work will involve integration of this platform in a remote
laboratory setup.

REFERENCES

[1] K. Pathak, J. Franch, and S. K. Agrawal, “Velocity and position control
of a wheeled inverted pendulum by partial feedback linearization,” IEEE
Transactions on Robotics, vol. 21, no. 3, pp. 505–513, 2005.

[2] S. C. Peters, J. E. Bobrow, and K. Iagnemma, “Stabilizing a vehicle
near rollover: An analogy to cart-pole stabilization,” in IEEE Int. Conf.
on Robotics and Automation (ICRA), 2010, pp. 5194–5200.

[3] T. Komura, A. Nagano, H. Leung, and Y. Shinagawa, “Simulating
pathological gait using the enhanced linear inverted pendulum model,”
IEEE Transactions on Biomedical Engineering, vol. 52, no. 9, pp. 1502–
1513, 2005.

[4] H. T. Teixeira, V. S. de Mattos Siqueira, and C. J. Munaro, “Comparison
of methods for estimation and compensation of friction applied to an
inverted pendulum,” in IEEE Int. Conf. on Control and Automation
(ICCA), 2011, pp. 818–823.

[5] Quanser Inc., “Linear servo base unit with inverted pendu-
lum,” available online at https://www.quanser.com/products/
linear-servo-base-unit-inverted-pendulum/.

[6] Inteco, “Pendulum & cart control system,” available online at http://
www.inteco.com.pl/products/pendulum-cart-control-system/.

[7] Bytronic Ltd., “Pendulum control system,” available online at http://
www.bytronic.net/product/pendulum-control-system/.

[8] E. Kourtikakis, E. Kapellakis, J. Fasoulas, and M. Sfakiotakis, “An
embedded controller for the pendubot,” in Int. Symp. on Ambient
Intelligence and Embedded Systems (AmiEs16), 2016.
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