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Overview
= Motivation and typical applications

= Non invasive measurement by means of
impedance spectroscopy

= Implementation Hardware of the BMS with
built-in impedance spectroscopy functionality

= New Software Algorithms of the BMS

= Summary
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Motivation

&3
= Necessary Requirement: Safety
Monitoring of voltages, g @
temperatures and currents
of each cell — . 5

= Important quantities for a +—
save and reliable operation V. : | Advanced
of the battery : ” BMS

management systems: i
State of Charge (So(C)

and the State of Health _T_
(SoH) -

of each cell of the
complete battery system

[
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Typical Application

Prequalified providers of primary
balancing power (PBP) apply for

an auction every week

Requirement: Minimum 1MW PBP

Service is automatically

dependent on the grid frequency

PBP delivered within 30 seconds

and up to 15min.

State of the art: For each MW
PBP approx. 2MWh of battery
capacity is necessary.

Diagnostic features like the SoC
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for 24h/7d- operation are
essential!

Primary balancing power with batteries
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Diagnostic problems with LTO-Cells

Bidirectional PBP requires an Max.15min
average SoC at 50% with high charge
swings towards 100% and 0%. with 1MW
Permanent cycling of the battery 50%
requires high reliability of the Max. 15min
complete system and an exact discharge
Determination of the SoC with IMW
Problem : Open Circuit Voltage of a LTO-cell over SoC und T
SoC-Estimation T T T T el
by open circuit voltage 2.4 — ——10¢
is impossible for LTO- 2.2 30 |
cell technology s, | | |
§1.8: ] ——
< -
1-6; SOC'P
1.4
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Impedance spectroscopy

Measured raw data of a single LTO-Cell
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Impedance spectroscopy

Impedances of several frequency
sweeps at different SoC in %
show a distinctive behavior
especially at low frequencies!

Further impact on the
impedance:

Temperature, current history
and age.

SoC of a cell is highly
dependent on the operation
point!

9/24/2018 Non invasive measurement technique
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Nyquist, L2 = 2.9516e-05
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BMS with built-in impedance spectroscopy
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Hardware of the BMS

- BMS-Slave for 12 cells:
I) Limit monitoring: Cell
Temperatures, voltages,
string current
IT) Impedance
spectroscopy
functionality for each cell
ITI) Modular concept for
additional cells

- BMS-Gateway:
Communication between
one BMS-Master and
several BMS-Slaves

- BMS-Master:

I) Intelligent data
collection unit
II) Decision about limits 5o o single
III) Estimation of SoC | .

and SoH impedance spectroscopy

9/24/2018 Components of the BMS
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Software algorithm for SoC

* Since the SoC is heavily dependent on the operation point
impedance spectroscopy is not sufficient!

* Representative features are needed to estimate the cell
individual SoC

e Solution:
1) Supervised machine learning with suitable features
II) Generation of an adequate training data set
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Software algorlthm on the BMS
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Software algorithm on the BMS

I, Charge and discharge profile similar to primary
balancing power demands of one day
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Software algor|thm on the BMS
, | 1) ”‘"(;//; /

:::::::::::::::::::::::::::::::::::::::::::::

Complete setup: Battery tester and
climate chamber

6 Channel: Battery tester (with
Control software for data impedance spectroscopy)
generation

6 LTO-CeIIs-in a cIimaté
chamber
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Software Algorithm on the BMS

Nyaquist plot lynominal fit and measurement)
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Training procedure of supervised machine learning

Supervised machine learning procedure

2500 training and 500 test data sets
Modell represents a feed forward artificial network
Different combinations of input data sets and
number of neurons in hidden layers were
tested during the training process
Best results are achieved with 20 neurons in 2
hidden layers and with all 11 given features.

SoC
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Software algorithm on the BMS
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« Overall accuracy: 99% of all samples show an error

less than +/-5% of the correct SoC.

9/24/2018 Results (all cells)
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Software algorithm on the BMS
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« Variances in the process quality of the cells show, that the
SoC of some cells (e.g. cell 1 and 3) can be better
estimated than others (e.g. cells 2 and 6).

« Determined model keeps the relative error of the SoC
within an acceptable +/-5% SoC-error
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Summary

Supervised machine learning methodology can be
successfully applied to BMS in order to improve the overall
diagnostic functionality for the determination of SoC of
Lithium-Ion Cells.

Artificial neuronal networks can be easily implemented
in BMS-Master-Units with low computational resources.

The same methodology can be applied to estimate the SoH
after the production of cell or during the operation of
complete battery systems:

This is part of a new research project funded by the BMBF
(Federal Ministry of Education and Research in Germany)

All methods are non destructive and non invasive, so
no sensors have to be integrated in the cells, which would
cause complications on the electro-chemical behavior.
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