
An Arduino Simulator for Practical Embedded
Programming Teaching

Paulo F. Gonçalves
ISEC

Instituto Politécnico de Coimbra
Coimbra, Portugal

a21171940@alunos.isec.pt

João Durães
ISEC

Instituto Politécnico de Coimbra
Coimbra, Portugal

jduraes@isec.pt

Abstract—Embedded systems are currently very relevant in
many crucial aspects of modern society. Common daily-use
objects are becoming smart, increasingly using micro controllers
and embedded systems, and the IoT has amplified this tendency.
In this context, the need for tools for training professionals for
this type of systems is very relevant.

Many courses address teaching programing for embedded
systems using the Arduino platform. This platform offers many
advantages but has inherent and unavoidable costs: component
setup time, flash wear-out due to the many writes involved,
wire connection issues and other electronic details not relevant
for introduction to programing and so on. We propose the
use of a simulator that completely replaces the need for the
physical device in classes while keeping the typical development
unchanged.

This paper presents our Arduino simulator platform that we
developed for educational purposes, including several components
commonly used. We discuss its structure and technological
options, and performance aspects. We show how it can be used in
an educational context with virtually no changes in the strategy
in the classes of introductory embedded programming. We also
present the advantages and some use cases that are made possible
using our simulator that would be otherwise difficult using the
physical device.

Index Terms—Arduino, teaching, embedded programming

I. INTRODUCTION

Programming for embedded systems using common plat-
forms such as Arduino [1] is becoming a relevant and in-
creasingly common scenario. Several factors contribute to this
situation, and chief among them are the relevance of embedded
systems, and the relevance of early programming skills.

Relevance of embedded systems: Today’s society is in-
creasingly becoming dependent on pervasive and ubiquitous
computing. Many common objects are now required to be
”smart”. Many examples can be given, from the typical and
now commonplace sensor for doors and automated window
blinds, to such things as wearable devices, or the now very
relevant devices for climate conditions tracking for agriculture
and climate change assessment. In other words, embedded
systems are gaining a significant momentum. With this mo-
mentum comes the important aspect of training professionals
for programming for embedded systems and programming at
general.

Relevance of early programming skills: Computer program-
ming has been recognized as an important skill for the popu-

lation at general. Instead of being seen as a particular skill for
a specific set of professionals, it is now seen as an important
aspect of literacy for the common citizen [2], [3], and most
important, it is also recognized as a tool to promote early
cognitive development. To address this, many elementary and
middle schools are now including subjects of programming
using Arduino [4]. This platform is more affordable than a
common desktop computer and can also be used for simple
robotic-themed lessons to capture the student attention and
devotion.

Teaching programming using Arduino as the computing
platform is then an increasingly common practice. However,
there are some drawbacks:

• Setup procedures: Setting-up an Arduino with smal com-
ponents attached (even simple ones as LEDs) is error-
prone and may introduce some disorder to the classroom
and pose a barrier to the acceptance of the technology
from students, in particular.

• Time: Setup time (and tear-down time) is not negligible,
consuming valuable lesson time.

• Skill impedance: Typical Arduino setups tend to use
small electronic components, such as LEDs, variable
resistors, etc. This introduces a skill mismatch where
students may also be requires to know some aspects about
microelectronics, and this is not a typical or easy skill
for young students and forms a barrier (impedance) to
learning the intended skill which is programming.

• Cost: Although one Arduino setup is relatively cheap,
one classroom will require many such setups and the total
cost can become rapidly high, posing problems to smaller
schools.

• Wear-down: The many writes to the Arduino flash may
bring an early fail to the equipment, causing an increased
cost.

To address the above mentioned issues we propose the use
of a Arduino simulator entirely implemented in software. We
intend to address all the above issues in the following manner:

• Concerning the setup procedures and required time, the
simulator shall be readily available for use immediately
after its launch, requiring no extra actions besides a min-
imal once-per-installation setup (explained further on).



• The skill impedance issue will be solved as no real
electronic components will be involved, and circuit setup
is made using the mouse to connect virtual lines to virtual
components or processor pins.

• Cost will not be an issue as the simulator will use the
common computers already available at most, if not all,
schools. The simulator does not requires heavy processing
power and can be hosted in medium-end desktop or
servers. The wear-down issue will also be non existent,
as there is no Arduino hardware involved.

The following aspects of the simulator are worth noting. The
first is the compatibility of the simulator with the standard
IDE used with Arduino. Our simulator is completely compati-
ble with the Arduino IDE as it relies on a new board driver that
is simply added and selected via the IDE menu. This board
driver will transparently connect the IDE with the simulator,
and from the programmer point of view, programming for the
simulator and programming for a real Arduino will be the
same. The second aspect is cost which is none, assuming the
availability of common computers. Our intention is to make
this project fully open-source, to further promote Arduino
adoption and universal access to programming skills. The user
interface is web-based which means that no extra skills will
be required to use the simulator. Finally, there are new uses
available with the simulator that are not possible with Arduino,
namely debug, step-by-step execution and save and restore of
the circuit. This will be explained further in the paper.

The remainder of the paper is organized as follows: The next
section presents a brief overview of the Arduino platform. The
features available in the simulator, as well as a circuit example
are given in section III. The architecture of our simulator is
described in section IV. The current state of the simulator and
directions for future are described in section V, and section
VI presents some conclusions.

II. ARDUINO PLATFORM

Arduino is an open-source electronic platform composed of
a hardware component and a software component that work
together [1].

The hardware side is a very simple and compact printed
circuit board with an AVR [5] microcontroller (the exact
model depends on the Arduino version), a power supply, a
serial interface (usually USB) for programming, input and
output pins for connection to other electronic devices and a
bootloader that allows the device to be programmed without
the need for a dedicated programming device. It also has
a physical arrangement of input and output pins to allow
stacking of shields created specifically for Arduino. We can
see the arrangement of components on the printed circuit board
in Fig. 1.

The Arduino software component includes an API that
contains a number of methods for manipulating all available
hardware such as input and output pins, timers, ADCs, and so
on. There are also several libraries supporting specific hard-
ware such as LCD displays, ethernet interfaces, among others.
It also has an integrated development environment (IDE) that

Fig. 1. Arduino Uno diagram. Source: Adapted from [6]

lets developers use an Arduino API-specific editor to write
code, compile and program the device, all under the same
user interface. Installing the IDE also installs all the tools
required for preprocessing, compiling, assembling, linking,
and uploading the executable file to the microcontroller.

A. ATmega328P

The Arduino board chosen for proof of concept of our sim-
ulator was the Arduino Uno which is equipped with Atmel’s
ATmega328P microcontroller. It is a microcontroller that im-
plements Harvard architecture, commonly used in embedded
systems [7], which has the characteristic of having separate
memory and instruction addressing, and 8-bit AVR instruction
set. The AVR architecture has 131 instructions, most of which
run in just one clock cycle, and 32 general purpose registers all
linked directly to the Arithmetic and Logic Unit (ALU), also
allowing access to registers in a single clock cycle (Fig. 2).

This particular device has 32Kbytes of FLASH (program
memory) which allows storing up to 16384 instructions as the
instructions of AVR devices are 16 or 32 bit long. In terms of
RAM it has 2Kbytes and 1Kbyte of EEPROM (nonvolatile
memory) normally used to store configurations. The clock
speed can be up to 20MHz (the Arduino Uno uses a 16MHz
clock) and it can reach 20MIPS. In terms of peripherals, it
has:

• 27 I/O pins;
• 2 8-bit timer/counters;
• 3 16-bit timer/counters;
• Real-time counter with separate oscillator;
• 10 PWM channels;
• 8 10-bit ADC channels;
• 2 programmable serial USARTs;



Fig. 2. AVR architecture block diagram. Source [8]

• 2 Master/Slave SPI serial interfaces;
• 2 Two-Wire serial interfaces (I2C);
• Programmable Watchdog Timer with separate on-chip

oscillator;
• One On-chip analog comparator;
• Interrupt and wake-up on pin change.
It has also the following features:
• One internal 8 MHz calibrated oscillator;
• External and internal interrupt sources;
• 6 sleep modes;
• Clock failure detection mechanism;
• Individual serial number to represent a unique ID.
The processor data memory is organized into 4 zones, the

first being the General Purpose working registers, the second
being the I/O registers, the third being extended I/O registers
and the fourth the SRAM (Fig. 3).

The Arduino board also comes with a bootloader that allows
updating the firmware from within the application itself.

There are no special instructions to control the peripherals;
instead, the peripherals are controlled by writing specific
values to the microcontroller I/O registers.

III. SIMULATOR FEATURES

Our simulator currently replicates practically all common
used features of the Arduino platform, and also includes the

Fig. 3. ATmega328P memory map. Source [8]

ability to simulate several components to build virtual circuits
to use with the simulated processor. We start by describing the
user interface to give a very high-level idea of the simulator use
and capabilities, and then proceed to describe the components
and features available.

The user interface has 3 distinct areas as shown in Fig. 4
that also shows a typical circuit. It has a taskbar at the top
of the interface where the user can perform tasks such as
opening and saving projects, starting, stopping and step-by-
step the Arduino microcontroller, using serial monitor, viewing
FLASH and SRAM content and opening a window with the
source code created in the Arduino IDE where you can place
breakpoints and see the execution location if using step-by-
step functionality. There is also the possibility to undo and
redo actions.

On the left side there is a component palette where the user
can choose components to add to the drawing area. There the
user can select an Arduino, LEDs, buttons, push buttons, seven
segment displays and potentiometers.

Connections are made by clicking with the mouse cursor on
one connection point and dragging to another one. Colors help
identify voltage potential at the connection points and at the
connections themselves. Black indicates 0 volts, red a positive
voltage and blue no voltage.

Although the simulator runs at a comparable speed of about
10MHz (depending on host hardware) instead of 16MHz on
the Arduino board, it runs at a speed that allows feedback to
the user from the circuit, such as blinking a LED, very similar
to real hardware, especially if delays are used.

A. Implemented peripherals

The following peripherals have been implemented and
should be enough for most microcontroller introductory ex-
ercises:

• GPIOs: Allows the use of regular input/output pins;
• Timer0: For the Arduino delay and millis functions;
• USART0: For the serial port. It allows the user to send

and receive data through the serial monitor in the web
interface (it doesn’t change the pin values of TX on the
board or read from RX);

• ADC: Allows the conversion of analogue values. There
is a potentiometer that the users can use to send analogue



Fig. 4. Interface

values to the system. The analog ref pin can be set and
it’s value is used by the ADC.

We decided not to implement peripherals that cause very
fast variations in the pins because this functionality causes
a long delay in the propagation of the information from the
server (where the simulator is) to the client (where the user
interface is), causing the simulation to be slow and therefore
no longer practical. These peripherals are PWM and all serial
communications like USART, SPI and I2C. The USART0 port
has been implemented but communication is redirected to the
serial monitor in the web client instead of the regular pins.

B. Circuit components

There are some basic components available for the user to
use in the construction of the electronic circuit:

• LEDs: There are 3 different colors, green, red and blue.
When they are off they stay gray, when on they change to
their respective color. The simulated LEDs have polarity
like the real ones.

• Button: It’s a regular button that the user can click with
the mouse to open or close the circuit.

• Push Button: It’s a button that the user can press with
the mouse to close the circuit and that opens when the
user releases the mouse.

• 7 Segment Display: This is composed by LEDs arranged
in a format that allows them to represent numbers. They
have 8 inputs (7 for the number plus a decimal point)
and a common cathode.

• Potentiometer: This component has 3 terminals, 2 inputs
and 1 output. The output is the relative difference between

the inputs. It can be used to input an analog value to the
analog pins of the Arduino board.

C. Debugging

The simulator allows some debugging features not available
in the real Arduino board. One of these features is the ability to
pause or resume the microcontroller execution at any time by
pressing a button. The practical effects are as if the clock signal
on the real device is stopped while maintaining the entire
internal state of the device. This allows developers to inspect
the SRAM memory to see what values it contains and also
to look at the FLASH memory with the decoded instructions
and to know which one was last executed.

The simulator also allows developers to see which source
code lines are related to which processor instructions. This is
done by selecting an address in the FLASH memory window or
a code line number in the source code window (when an ELF
[9] file was loaded, that has information about the source files),
to insert breakpoints, which when executed, automatically
pauses the simulation.

When the simulation is paused, the user can execute one
instruction at a time (step-by-step) and track changes to SRAM
values in the SRAM watch window and follow the instructions
that are executing in the FLASH and source code watch
windows. The mapping between the executing address and the
line in the source code is taken from the DWARF [10] format
present in the ELF file.

D. Other features

Other noteworthy features are:



• The ability to load binaries in Intel HEX and ELF
formats, with the ELF format taking advantage of the
information present in the file to aid debugging.

• The ability to save projects for later use and further
development, including not only the program but also the
circuit.

• The perfect integration with the Arduino IDE allowing
users to program the simulator as if it were a real board.

• The ability to load binary files directly in the web client
interface in case users want to use another compiler not
integrated in the Arduino IDE.

• The serial port monitor is where the user can view the
data sent by the program running in the simulator to the
USART0 device and also send data that the program can
handle. It has similar usage to the Arduino IDE serial
port monitor.

IV. SIMULATOR ARCHITECTURE

We decided to use a web environment in order to lower
the costs of installation, maintenance and accessibility. This
type of environment also allows to use workstations with
less computational power as the workstations used by the
developer will be responsible for just the user interface and
circuit management, while the microcontroller simulation and
instruction execution is hosted in a more powerful server.

In terms of accessibility, the ability to access the simulator
via HTTP allows students to work on the system anywhere
they have Internet without requiring unusual settings as it
might have to be if it were a traditional client/server appli-
cation with the requirement to use their own TCP/IP ports.

The simulator is organized as a a typical web client/server
system. The server hosts the simulation logic and mechanisms
and can serve multiple independent simulations at a time,
depending on the computing power. The client handles all
the user and IDE interaction. The user interface is based on
common web technology and is served to the user through
common web-browser such as firefox or chrome. Fig. 5 depicts
the modules composing the simulator, which are:

• Microcontroller simulator: It is in this module that
all the features of the microcontroller are implemented,

Fig. 5. Architecture

namely the AVR Instruction Set, the microcontroller
peripherals, FLASH and SRAM. It is this module that
executes the microcontroller code, exposes methods for
changing the value of the pins and throws events when
their state is changed internally. This module is designed
to be easy to implement other microcontrollers from the
same Atmel family. ISA, FLASH, SRAM and periph-
erals code can be used on processors other than the
ATmega328P that was implemented.
This module is a separate project and its features can be
used in other applications.

• Web server: This module manages all users in the
application, maintains simulation instances, and links the
simulation to it’s user client and programmer tool. It is
also the responsibility of this module to store user-created
projects and all data relating to those projects.

• Web client: The web client is where the user can create a
project to simulate. The user has a drawing area available
where he can add an Arduino and various electronic
components and make connections between them. All
the simulator functionality can be assessed using the
client: start the simulation, pause it, execute step-by-step,
analyze FLASH and SRAM memory contents, add or
remove breakpoints, etc.
It is also the client’s responsibility to try to periodically
connect to the programmer tool software (board manager
plugin in the Arduino IDE) and transfer to it the data
necessary for it to be able to connect directly to the web
server.

• Programmer tool: This module is a software that is
installed in the Arduino IDE and replaces the device
programming program (avrdude [11]). In this case instead
of programming a real device the binary is sent to the web
server so that it can perform the simulation. It’s included
in the board driver that is installed in the Arduino IDE.

A. Virtualization technique

There are several techniques for virtualization (simulation)
and we conducted a comparative study to choose the best vir-
tualization technique to implement the simulator, specifically,
to understand which one would result in the best performance
(speed of simulation). Of the virtualization types presented
by Smith and Nair [12], the one that best fits for a device
like Arduino is Emulation. In this case we have a different
ISA (Instruction Set Architecture) between guest and host and
we just want to execute one process (the firmware we have
prepared for the microcontroller).

From the techniques available to apply in emulation, we
tested and compared the performance of one implementation
of interpretation with one implementation of compiled simu-
lation. Our results [13] suggest that, at least for this scenario,
the best technique interpretation.

B. Arduino Board for programming

We could have chosen to use simple file upload to load
the Arduino executable into the web application, but this has



a problem: when using a real Arduino the user loads the
executable directly through the IDE interface, and we do not
want to interfere nor change the developer tools and user
habits.

In order to maintain this aspect of IDE usage, we decided
to develop a new Board [14], a kind of plugin for the Arduino
IDE, which allows the IDE to be expanded to new hardware.
In this case this board defines a new type of Arduino in IDE
Board Manager, ”Arduino Uno Simulator”. The user just
has to select from an IDE menu which device he wants to use,
if the real one or the simulated one.

This new board has to be installed in the IDE but it is
extremely easy to do and only needs to be done once in each
workstation.

The board extends the existing Arduino Uno board, allow-
ing us to maintain the same compiler by defining only a new
programmer tool.

The new programmer tool was written in Java because the
Arduino IDE is also a Java application and has Java JRE
integrated which allows us to ensure that the programmer tool
will work on all architectures where the IDE works, otherwise
a new tool would have to be built for each architecture where
the IDE works.

Since the simulator is a web application, a challenge in
creating the programmer tool was knowing where to send the
binary produced by the compiler. One possibility would be to
have a single server and then its address could be hardcoded in
the programmer tool. This scenario is not desired because the
processing power provided would soon be exhausted. The best
way would be to have multiple server software installations,
for example, each school having a server exclusively for
its students. Even if that was the case (a single server) we
would still have the problem of knowing what simulation each
programmer tool upload belongs. To overcome this, an HTTP
server has been deployed on the programmer tool itself, which
the client web application can connect to as it can always be
accessed on localhost, and transfers to the programmer tool the
information it needs to load the binary on the server where the
simulation is being performed. This information is the HTTP
address of the server and the user session identifier of the web
application.

C. Circuit simulation

The simulation of the Arduino board is done on the server
but the simulation of the electronic circuit connected to the
board is done on the client. This approach was chosen because
the electronics simulation is more basic and can be easily done
in JavaScript in the client (browser). This also allows the de-
velopment of electronic components and electronic simulation
in general to be built on a separate project which facilitates
development. Thus, communication between client and server,
in terms of electronic signals, is limited to the pins of the
Arduino board which also makes connecting the two system
components easier.

V. FEATURES AND WORK IN PROGRESS

Some peripherals such as EEPROM memory and some
interrupt types are still being implemented.

The project is still in a validation phase and tests are
planned where high school students from the Information
Technology area of Avelar Brotero High School in Coimbra
will be presented to the simulator in the context of their class.

The goal is for some students to be taught in the simulator
while others will be part of a control group. Based on some
metrics such as the solving time of the proposed exercises,
evolution of student grades, student and teacher satisfaction
surveys, it is intended to verify if the simulator has the capacity
to be used as a pedagogic tool and if it may even have
advantages over the use of real Arduino boards.

These field tests may also provide relevant suggestions that
may lead to some features being reformulated or new ones
introduced.

VI. CONCLUSIONS

All the basic Arduino IDE examples that use the peripherals
implemented in the simulator can be run.

Our simulator replicates the functionalities present at the
Arduino Uno and required for training programming for
the Arduino platform. Using the simulator it is possible for
students to train outside the classroom as there is no need to
have the hardware with them. They can easily take homework
and thus practice for more hours than class time would allow
them.

The simulator also allows to Debug the created programs
which is not possible with the commonly used tools (just the
Arduino IDE) or without making physical modifications to the
Arduino board.

At this time the number of simultaneous simulations is
limited by the number of cores available on the web server
since each simulation fully occupies a core. As future work we
intend to separate the microcontroller simulation to a process
from the web server into other servers but under remote control
of the web server. This will allow us to have multiple execution
nodes controlled by the same web server which will give us
virtually unlimited scalability of processing power.

At this point we believe that this simulator will provide
a useful teaching and training environment. We are currently
starting a test in a real school and relevant results of real-use
by students will be available.

REFERENCES

[1] Arduino.cc. (2018) Arduino - home. [Online]. Available:
https://www.arduino.cc/

[2] M. Prensky, “Programming is the new literacy,” Edutopia magazine,
2008.

[3] A. V. and, “Understanding computer programming as a literacy,”
Literacy in Composition Studies, vol. 1, no. 2, pp. 42–64, Oct. 2013.
[Online]. Available: https://doi.org/10.21623/1.1.2.4

[4] F. Agatolio and M. Moro, “A workshop to promote arduino-based robots
as wide spectrum learning support tools,” in Robotics in Education.
Springer, 2017, pp. 113–125.

[5] Atmel, “AVR Instruction Set Manual,” 2016.



[6] K. kumar C S, C. K.V, N. A, M. B, and I. Appaji, “Vehicle
speed monitoring system using arduino and speed sensor,” IJRDO
- Journal of Computer Science Engineering (ISSN: 2456-1843),
vol. 3, no. 2, pp. 33–40, Dec. 2017. [Online]. Available:
https://www.ijrdo.org/index.php/cse/article/view/396

[7] A. Francillon and C. Castelluccia, “Code injection attacks on harvard-
architecture devices,” in Proceedings of the 15th ACM conference on
Computer and communications security - CCS '08. ACM Press, 2008.
[Online]. Available: https://doi.org/10.1145/1455770.1455775

[8] Atmel, “ATmega328/P Datasheet,” 2018.
[9] T. I. S. Committee et al., “Executable and linkable format (elf),”

Specification, Unix System Laboratories, vol. 1, no. 1, 2001.
[10] M. J. Eager, “Eager consulting,” Introduction to the DWARF debugging

format, 2012.
[11] (2019) Avrdude - avr downloader/uploader. [Online]. Available:

https://www.nongnu.org/avrdude/
[12] J. Smith and R. Nair, “The architecture of virtual machines,”

Computer, vol. 38, no. 5, pp. 32–38, May 2005. [Online]. Available:
https://doi.org/10.1109/mc.2005.173

[13] P. F. Goncalves, J. Bernardino, and J. Duraes, “Virtualization
technologies for arduino simulation,” in 2019 14th Iberian Conference
on Information Systems and Technologies (CISTI). IEEE, Jun. 2019.
[Online]. Available: https://doi.org/10.23919/cisti.2019.8760727

[14] Arduino. (2019) Arduino ide 1.5 3rd party hardware specification.
[Online]. Available: https://github.com/arduino/Arduino/wiki/Arduino-
IDE-1.5-3rd-party-Hardware-specification


