
E.G. Hoffmann, Kiel / Germany

Playing multisound melodies on an Arduino Coimbra 12./13.09.2019

Playing multisound melodies
on an Arduino

The Arduino is a small board with an
ATMEL microcontroller.

Nano Rev3
ATMEL 328P
32kB + 2 KB

Uno Rev3
ATMEL 328P
32kB + 2 KB

Arduino
Mega 256

Rev3
ATMEL 2560P
256kB + 8 KB

E.G. Hoffmann, Kiel / Germany

- 2 -

Playing multisound melodies on an Arduino Coimbra 12./13.09.2019

Allows programming close to modern C++.
Written on a PC. Upload per USB to the controller.

Starting the Arduino – IDE

E.G. Hoffmann, Kiel / Germany

- 3 -

Playing multisound melodies on an Arduino Coimbra 12./13.09.2019

Many Arduino-libraries are available.
The most important for this project is
Brett Hagmans Tone-Library.

It uses the timers of the controller to toggle
(interrupt controlled) at arbitrary output ports
the voltage between 0V and 5V.

That’s the way to generate squarewave output
of wanted frequencies and durations.

Since the MEGA 328 has three timers
it is possible to generate up to three
independent tone-outputs simultaneously.

E.G. Hoffmann, Kiel / Germany

- 4 -

Playing multisound melodies on an Arduino Coimbra 12./13.09.2019

Outline

I. My Tone-notation

II. Playing single-sound melodies

III. Playing multi-sound melodies

IV. Playing canons

V. C++ usage

E.G. Hoffmann, Kiel / Germany

- 5 -

Playing multisound melodies on an Arduino Coimbra 12./13.09.2019

I. My Tone-notation

Let’s start with one single voice and with coding melodies according
to the common sheet music.

Coding: “D48.D46 E44 D44 G44 FS42 D48.D46 E44 D44 A44 G42 D44.D46 “

Coding: “D54 H44 G44 FS44 E42 C58.C56 H44 G44 A44 G42 “

Separate notes are separated by at least one space-character ‘ ‘.

Connected notes are not separated.

E.G. Hoffmann, Kiel / Germany

- 6 -

Playing multisound melodies on an Arduino Coimbra 12./13.09.2019

The first two notes are not separated D48.D46 (D4 3/16 D4 1/16) .
For pauses in melodies we use the character P; P4 is a quarter pause.

A note is syntactically:

 note-item ::= note | pause .
 pause ::= P duration .
 note ::= note-letter octave duration .
 note-letter ::= A | B | C | D | E | F | G | H .
 octave ::= 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 .
 duration ::= number appendix .
 number ::= 1 | 2 | 3 | 4 | 6 | 8 . // 1/1, 1/2, 1/32, 1/4, 1/16, 1/8
 appendix ::= nothing | . | T . // NOOP, duration *= 1.5, duration *= 2/3

For separated notes the duration will be reduced by about 5%
and a pause of just these 5% will be appended.

| |: | :| | ! .

E.G. Hoffmann, Kiel / Germany

- 7 -

Playing multisound melodies on an Arduino Coimbra 12./13.09.2019

The first two notes are not separated D48.D46 (D4 3/16 D4 1/16) .
For pauses in melodies we use the character P; P4 is a quarter pause.

A note is syntactically:

 note-item ::= note | pause
 pause ::= P duration .
 note ::= note-letter octave duration .
 note-letter ::= A | B | C | D | E | F | G | H .
 octave ::= 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 .
 duration ::= number appendix .
 number ::= 1 | 2 | 3 | 4 | 6 | 8 . // 1/1, 1/2, 1/32, 1/4, 1/16, 1/8
 appendix ::= nothing | . | T . // NOOP, duration *= 1.5, duration *= 2/3

For separated notes the duration will be reduced by about 5%
and a pause of just these 5% will be appended.

But what is with the T ?

| |: | :| | ! .

E.G. Hoffmann, Kiel / Germany

- 8 -

Playing multisound melodies on an Arduino Coimbra 12./13.09.2019

But what is with the T ?

The best explanation I found is from Elvis Presley.

In his song “I can’t help falling in love with you” he uses the Triole.
That means 3 notes in the time of 2 indicated by a bow with a 3 indication.

Coding:
 D42 E42 F42 G44T A44T B44T A42 G42 F41

3,78 cm

total duration =
two quarter notes =

one half note

E.G. Hoffmann, Kiel / Germany

- 9 -

Playing multisound melodies on an Arduino Coimbra 12./13.09.2019

The Tone.h of Brett Hagmans Tone-Library.

class Tone { // Tone.h
 public: // only the standard constructor
 void begin(uint8_t tonePin);
 bool isPlaying();
 void play(uint16_t frequency,
 uint32_t duration = 0);
 void stop();
 private:
 static uint8_t _tone_pin_count;
 uint8_t _pin;
 int8_t _timer;
};

II. Playing single-tone melodies

E.G. Hoffmann, Kiel / Germany

- 10 -

Playing multisound melodies on an Arduino Coimbra 12./13.09.2019

#include <Tone.h>
const int WHOLE = 1248, HALF=WHOLE/2, QUARTER=WHOLE/4;

void setup() {
 Tone t; // Tone-object
 t.begin(8); // tonePin = 8
 t.play(NOTE_D4, WHOLE*3/16); while (t.isPlaying());
 t.play(NOTE_D4, WHOLE/16); while (t.isPlaying());
 t.play(NOTE_E4, QUARTER); while (t.isPlaying());
 t.play(NOTE_D4, QUARTER); while (t.isPlaying());
 t.play(NOTE_G4, QUARTER); while (t.isPlaying());
 t.play(NOTE_FS4, HALF); while (t.isPlaying());
}

void loop() { }

Done with Brett Hagmans
Tone-library

“

E.G. Hoffmann, Kiel / Germany

- 11 -

Playing multisound melodies on an Arduino Coimbra 12./13.09.2019

Crying for
a String of
note-names

E.G. Hoffmann, Kiel / Germany

- 12 -

Playing multisound melodies on an Arduino Coimbra 12./13.09.2019

Preparation:
 set a pointer to the beginning of the note-string.

Playing:
 while (not_at_the_end_of_the_note-string) {
 get_next_note();
 start_playing_it_for_its_duration();
 while (it_is_playing()) ; // Active wait / busy wait. }

Do nothing !
Wasted Time !

No time for anything else !

A simple strategie of playing melodies using
- note-Strings and
- the original Tone-library with only
- void play(frequency, duration) and
- bool isPlaying()

E.G. Hoffmann, Kiel / Germany

- 13 -

Playing multisound melodies on an Arduino Coimbra 12./13.09.2019

My TonePlus-Library extends the Tone-Library

class Tone {
 public:
 void begin(uint8_t tonePin);
 bool isPlaying();
 void play(uint16_t frequency, uint32_t duration = 0);
 void stop();
 void pause(uint32_t duration);
 void delay(uint32_t duration);
 private:
 static int _tone_pin_count;
 uint8_t _pin;
 int8_t _timer;
};

E.G. Hoffmann, Kiel / Germany

- 14 -

Playing multisound melodies on an Arduino Coimbra 12./13.09.2019

First extension of the class Tone

1) Brett Hagmans Tone-library had no pause-function.

My first attempt:
 void pause(uint32_t duration)
{ play(24000,duration); }

Negative:
- Some pupils still heard this frequency.
- 24 kHz needs a lot of timer interrupts !

The ideas behind the realized version are
- not toggling the output (affords few modifications)
- use the frequency 0 Hz as pause indication (internally 8 kHz).

So in TonePlus:
void pause(uint32_t duration)
{ play(0,duration); }

E.G. Hoffmann, Kiel / Germany

- 15 -

Playing multisound melodies on an Arduino Coimbra 12./13.09.2019

Second extensions of the class Tone

2) Brett Hagmans Tone-library had no delay-function.

The realized version in TonePlus is

void delay(uint32_t duration)
 { pause(duration); while (isPlaying()); }

E.G. Hoffmann, Kiel / Germany

- 16 -

Playing multisound melodies on an Arduino Coimbra 12./13.09.2019

#include <Voices.h>
const char[] PROGMEM HAPPY = "D48.D46 E44 D44 G44 FS42"
"D48.D46 E44 D44 A44 G42"
"D48.D46 D54 H44 G44 FS44 E44"
"C58.C56 H44 G44 A44 G42.";

void setup() {
 Voice v1(8, HAPPY);
 v1.play();
 v1.delay(5000); // 5 s pause (active wait)
}

void loop() { }

With my TonePlus-library

With 5% pauses at the end
of not connected notes.

PROGMEM: The constant
char-Array is stored in the
bigger program memory.

The global delay-function is not available,
when all timers are used.

E.G. Hoffmann, Kiel / Germany

- 17 -

Playing multisound melodies on an Arduino Coimbra 12./13.09.2019

Under https://create.arduino.cc/projecthub/liss
I once found a small project for playing “Happy Birthday”
with 3 sounds (Tone-objects solo, bass, rhythm) and 3 LEDs.

void loop(void) {
 bass.play (NOTE_G3, t); switchBassLed();
 rythm.play(NOTE_G4, t24); switchRythmLed();
 solo.play(NOTE_E4, t); switchSoloLed();
 wait(rythm);
 rythm.play(NOTE_B4, t14); switchRythmLed();
 wait(rythm);
 rythm.play(NOTE_D5, t14); switchRythmLed();
 wait(rythm);
. . .

and further 190 lines

1/1 s
2/4 s
1/1 s

1/4 s

1/4 s

durations

III. Playing multi-sound melodies

https://create.arduino.cc/projecthub/liss

E.G. Hoffmann, Kiel / Germany

- 18 -

Playing multisound melodies on an Arduino Coimbra 12./13.09.2019

A better idea would be to
- use note-strings (solo, bass and rhythm)

 - use a scheduler to manage the sequencing
of the different voices correctly:
 while (isPlaying()) for the next ending tone;
 start the next tone for this just ended voice;

E.G. Hoffmann, Kiel / Germany

- 19 -

Playing multisound melodies on an Arduino Coimbra 12./13.09.2019

- Write the note-strings (solo, bass and rhythm).

const char PROGMEM SOLO[] =
 "D48.D46 E44 D44 G44 FS42 D48.D46 " // 1., 2.
 "E44 D44 A44 G44 D48.D46 " // 3., 4.
 "D54 H44 G44 FS44 E44 C58.C56 " // 5., 6.
 "H44 G44 A44 G42."; // 7., 8.
const char PROGMEM BASS[] =
 "P4 G34 H34 D44 D44 FS44 A44 " // 1., 2.
 "D44 FS44 A44 G34 H34 D44 " // 3., 4.
 "G34 H34 D44 G44 E44 G44 " // 5., 6.
 "G34 D44 FS34 G34 H34 H34 "; // 7., 8.
const char PROGMEM RHYTHM[] =
 "P4 G48 H46 D56 G48 H46 D56 G48 H46 D56 "// 1.
 "D58 FS56 A56 D58 FS56 A56 D58 FS56 A56 " // 2.
 "D58 FS56 A56 D58 FS56 A56 D58 FS56 A56 " // 3.
 "G48 H46 D56 G48 H46 D56 G48 H46 D56 " // 4.
 "D58 FS56 A56 D58 FS56 A56 D58 FS56 A56 " // 5.
 "C58 E56 G56 C58 E56 G56 C58 E56 G56 " // 6.
 "G48 H46 D56 G48 H46 D56 D58 FS56 A56 " // 7.
 "G48 H46 D56 G48 H46 D56 P4 "; // 8.

E.G. Hoffmann, Kiel / Germany

- 20 -

Playing multisound melodies on an Arduino Coimbra 12./13.09.2019

 Realize / program the idea

Preparation

- For all voices v0, v1, v2:
 set their startpointers (to beginning of their note-string).

Playing multisound melodies:

- Start the

while (not_at_the_end_of_all_note_strings) {

 v = tone_with_the_shortest_remaining_duration();

 d = remaining_duration(v);

 reduce_the_remaining_durations_of_all_voices_by(d);

 while (v.isPlaying());

 v.get_and_play_next_tone();

}

Scheduler

// active (busy) waiting !!

E.G. Hoffmann, Kiel / Germany

- 21 -

Playing multisound melodies on an Arduino Coimbra 12./13.09.2019

 Contains only one class Voice with

 - attributes for notes
- frequency, duration, …

 - pointers to note-strings
 - startPtr, ptr

 - static array with pointers to Voice-objects

 - all note-strings are stored in program-memory
 to save precious RAM place.

 - additional syntactic elements for the note-string:
 |: :| for repetition of parts of the note-string
 ! as information for the first voice of a canon
 to start the next voice at the beginning.

Concept for the new library Voices

E.G. Hoffmann, Kiel / Germany

- 22 -

Playing multisound melodies on an Arduino Coimbra 12./13.09.2019

 Strategy:

 All voices get the same melody.

 Only the first voice starts playing.

 When the first voice reaches an ‘!’ in the note-string,
- start the next voice (this one has to ignore ‘!’s)

 Stop playing, when the first voice reaches
the end of the note-string for the second time.

IV. Playing canons

E.G. Hoffmann, Kiel / Germany

- 23 -

Playing multisound melodies on an Arduino Coimbra 12./13.09.2019

This project “Playing Multisound Melodies” with
the aim of a Multisound Library is highly motivating.

It affords experimental programming using the Arduino
and leads to experimental learning many C++ features:

 - classes with attributes and methods (Voice, play, ...)

 - static functions and variables (static Voice* arrays, …)

 - templates (functions with different numbers of parameters)

 - scheduling (playing multiple voices)

 - interrupts (as alternative to polling / scheduling)

 - multitasking (possible when avoiding active waiting)

V. Used features of C++

E.G. Hoffmann, Kiel / Germany

- 24 -

Playing multisound melodies on an Arduino Coimbra 12./13.09.2019

Using Interrupts is a much better alternative

while (not_at_the_end_of_all_note_strings) {

 v = tone_with_the_shortest_remaining_duration();

 d = remaining_duration(v);

 reduce_the_remaining_durations_of_all_voices_by(d);

 while (v.isPlaying());

 v.get_and_play_next_tone();

}

Scheduler

void ISR() { // Called when a tone ends.
 v = tone_that just ended;
 v.get_and_play_next_tone();

}

InterruptHandler: ISR: Interrupt Service Routine

E.G. Hoffmann, Kiel / Germany

- 25 -

Playing multisound melodies on an Arduino Coimbra 12./13.09.2019

Using Interrupts is a much better alternative

void ISR() { // Called when a tone ends.
 v = tone_that just ended;
 v.get_and_play_next_tone();

}

InterruptHandler: ISR: Interrupt Service Routine

BUT:

ISRs should be as short as possible !
ISRs should be statically !
May interrupts happen during interrupt handling ?
What is with interrupt queuing ?
All is manageable !!!

Perfect teaching material for C++

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

