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Abstract—Nowadays, with the advancements in areas as sens-
ing, wearable and wireless communication technologies, it is
possible to develop intelligent systems to monitor continuous
human activities, in real-time, from a wide range of fields,
including sports. This paper investigates the viability of using
wearable textiles electrodes to recognize sports-related activities
taking into consideration subject’s bio-signals. Four healthy,
injury-free active males (22.5 ± 3 yrs) were included in this study.
To determine if the accuracy of the wearable technology allowed
us to recognize movement patterns, subjects realized one single
protocol session, comprising walking, running, strength, cycling
and stepping tasks. Athletes simultaneously wore the wearable
surface electromyographic (EMG) solution and a validated and
reliable EMG laboratory equipment, measuring the quadriceps,
hamstrings and gluteal muscles myoelectrical activity of both legs.
To provide average rectified EMG, the data from both devices
was identically processed. The deep learning method Long Short-
Term Memory (LSTM) is used to process the entire sequences
of data coming from both devices, which allowed to determine
that the wearable system and the laboratory instrument had an
accuracy of 98.6% and 100%, respectively, for activities that used
all six channels (cycling, running and stepping), and 79.2% and
83.3%, respectively, for activities that used only two channels
(strength exercises).

Index Terms—LSTM, Electromyography, Pattern recognition,
textile electrodes

I. INTRODUCTION

On a daily basis, a human being can easily recognize pat-
terns as well as changes in the surrounding environment, such
as motion, illumination, facial silhouettes, and others, making
this a good starting point to determine how to detect, identify
and contextualize information [3], [17]. In the last few years,
the advances in sensing, wearable and wireless communication
technologies, combined with the growing interest in neural
computing, resulted in a wide range of applications; many
concerned with pattern recognition [2]. Because of that, it is
now possible, under specific conditions, to develop intelligent
systems capable of recognizing and monitoring continuous

human activities in real-time. One of the most challenging
contexts to deploy such systems is in sports-related activities,
where a panoply of data should be analysed during training and
competition, such as core temperature, heart rate variability,
hydration and muscle activation. Nonetheless, the majority of
the available tools capable of reliably extracting these data
are laboratory instruments, which dampens their deployment
and ecological validity under real-world situations, namely
during training and competition. In order to overcome this
limitation, an increasing wider range of wearable solutions
has been making its way to the market. Wearable technology
has, by far, the greatest potential to provide the most accurate
information, in real-time, for coaches and sport scientists [5],
allowing the collection of a wider range of data necessary for
understanding the overall dynamics of the athlete. Contrary to
the main alternative technologies, as laboratory instruments,
ecologically validated wearable solutions can be deployed
during training and competition, having the potential to pro-
vide real-time data concerning each players physiological and
kinematic data that cannot be retrieved otherwise. However,
wearable technologies remain mostly unused within real sports
training and competition. One reason for this is that most of
the sensing modalities found in present wearables, including
surface electromyography (sEMG), are non-specific, noisy and
offer a decreased performance over use. Furthermore, most
wearables still rely on techniques that have been available
for decades, without exploring advanced approaches, namely
based on deep learning, to mitigate their limitations when com-
pared with laboratory instruments. It is therefore necessary to
further compare available wearable solutions with laboratory
instruments by using advanced state-of-the-art approaches.
This will allow to clearly understand the fundamental chal-
lenges faced by these technologies, paving the way towards
the development of their next generation, side-by-side with
novel scientific breakthroughs in data analysis.



A. Contribution and paper structure

This paper investigates, in comparison with a validated and
reliable surface Electromyographic laboratory equipment, the
viability of using wearable textiles electrodes in sports, to
recognize activities taking into consideration subject’s bio-
signals. The assessment of the proposed set of features is done
by employing a type of Recurrent Neural Network (RNN)
know as Long Short Term Memory Network (LSTM). This
paper is divided as follows: Section II presents the literature
review on daily life and sports activities recognition, where
it is exposed some of the work that has been done over the
past years towards the introduction of wearable devices and
its ecological value into areas such as sports. The proposed
methodology is presented in Section III where the protocol
includes the participants, the equipment, all the procedures, as
well as data collection and processing is described. Section
IV presents the experimental setup. It is shown the different
approaches that have been adopted as well as the data setup
which is then considered in Section V. At the end of this paper
there is Section VI that presents the final remarks about this
validity setup and its results.

II. BACKGROUND

Over the past decade, many authors have been studying the
human behaviour at the most diverse contexts such as daily
activities and sports. This activity recognition has applications
in health care and can be used to achieve optimal physical
preparation of elite athletes.

According to Yang et al. [19] most of the existing work
cannot find distinguishable features to accurately classify
different activities. For this reason, Yang et al. proposes a
systematic feature learning method, CNN (Convolution Neural
Network), to better solve Human Activity Recognition (HAR)
problems. The architecture proposed employed convolution
and pooling operations in order to capture signature patterns
from the data collected from the sensor at different time scales.
All salient patterns were unified among multiple channels and
then mapped into the different classes of human activities.
According to [19] the strengths of the proposed method
are: i)feature extraction is not performed on a hand-crafted
manners; ii)extracted features have more discriminative power
with respect to the classes of human activities; iii) feature
extraction and classification are unified in one model so their
performances are mutually enhanced. Also, they conclude that
in the experiments, the proposed CNN method outperforms
other state-of-the-art methods.

Regarding sports, according to Ermes, et al. [6] tracking
an human being daily activity can give information about its
life style in relation to its physical activity and thus promote a
more healthy life style. One important aspect about improving
performance is the physiological analysis of a player, whether
individual or collective. The research concerning this type of
data gained a lot of interest by scientists [11]. Boca and Park
[4], suggested a real-time approach using an ANN (artificial
neural network), capable of recognizing the myoelectric data.
In here, features were extracted through Fourier analysis and

then clustered by using the fuzzy c-means algorithm. After
that, data was automatically targeted and sent to a multilayer
perceptron (MLP) type neural network. Lastly, a digital signal
processor operated over the resulting set of weights, allowing
the mapping of the incoming signal on-the-fly. The experi-
mental results demonstrated that this approach produces highly
accurate discrimination of the control signal over interference
patterns.

Al-Mulla and Sepulveda [1] suggested the use of LMF
(method that performs both signal filtering and classification
simultaneously by learning the most appropriate filters) to
predict time using supervised ANN. This algorithm was com-
posed of five training inputs and one testing input signal. To
calculate the input’s rate of change, the first 20% of the signal
were used. In order to adjust its training weights, the ANN
used time to fatigue for the five training signals, allowing it
to predict it by using just 20% of the total sEMG data. The
results showed an average prediction error of 9.22% for time
prediction.

Modelling football data has become increasingly popular in
the last few years, reason for which several models have been
proposed with the purpose of estimating the characteristics
that cause a team to lose or win a match or to predict the
final score. The great majority of these models are based on
kinematics data that many times are collected visually or with
the help of cameras, such as demonstrated on the work of
Montoliu et al. [14] that applied a methodology which had
the purpose of performing the team activity recognition and
analysis. This methodology is the base on pattern recognition
and in particular on the Bag-of Words technique. They applied
these concepts in soccer video footage and, in addition to those
neural networks, applied several classifiers. They showed that
the used methodology was able to justify the common team
patterns and the recognition of specific soccer actions like ball
possession, quick attack and set piece.

In order to convert this models in an architecture more
ecological and closest to the user, so as to achieve a greater
accuracy, the usage of wearable technology in sports have been
increasing along the time [18], and with FIFA wanting to intro-
duce new technologies during games, several companies and
authors published and created several works with the attempt
to increase sports knowledge i.e., increasing the information
about technical, tactical, physiological, kinematic and kinetic
data.

Papic et al. [15] published an article about the early iden-
tification of future successful young players with the use of a
web-oriented expert system with fuzzy module. But this work
didn’t present several results or favorable outcomes. Jaspers et
al. [10] published an article about the use of neural networks
to analyze the relationship between the external and internal
training load in professional soccer player. They measured the
external load using global positioning system technology and
accelerometry. The internal load was assessed using the RPE
(Rated Perceived Exertion). They applied several neural net-
works and LASSO (Least Absolute Shrinkage and Selection
Operator) models in order to predict future RPE values for



further training sessions. They concluded that both the artificial
neural network and LASSO models outperformed the baseline
values.

Another study found in our bibliographic research was
published by Rossi et al. [16]. They studied the influence of
a based GPS tracking technology and an injury forecaster in
order to prevent further injuries. These new methodologies
showed accuracy and interpretable results. Grunz et al. [7]
studied the artificial neural networks to recognize tactical
patterns in soccer games. They use a special self-organizing
maps methodology applied to several positional data collected
over professional players. Comparing data from different pro-
fessional players they conclude that their method can detect
with relative high accuracy different tactical patterns and their
variations.

In an article written by Memmert et al. [12] a framework
for creative performance analysis was developed and based on
neural networks. Then, it was used to analyse creative behavior
of soccer and hockey player compared to a control group.
They conclude that they were able to assess greater creative
behavior in the two athletes groups compared to the control
group. We can conclude that during our bibliographic research,
we found a very interesting common point in every related-
work. All present some difficulties in establishing and creating
the framework, due to their complexities.

III. METHODOLOGY

A. Participants

In order to prove the feasibility of wearable technology for
action recognition in a sports context, it was realized a study
that encompassed four males (22.5 ± 3 yrs, 1.76 ± 0.019 m,
83,25 ± 2.63 kg). The participants included were all injury-
free, and the research data assessment was carried out at the
Biokinetic Laboratory, at the Faculty of Sport Sciences and
Physical Education - University of Coimbra.

B. Equipment

1) The Myontec’s MBody3 shorts is a constituted by two
components: MBody 3 Surface Electromyographic wear-
able shorts and MCell3 (Myonear Pro,Myontec, Fin-
land)1. This device can operate in online mode or in
recording mode. In online mode, device sends data
using a wireless connection establish communication
to an external solution in real-time via Bluetooth Low
Energy 4.0 (BLE). In recording mode, the device extract
neuromuscular activity form lower limbs muscles group,
making the recording in an internal memory which can
be downloaded and used later.

2) The Plux device is a telemetric Surface Electromyo-
graphic system recorder (Plux, Lisbon, Portugal)2. The
raw data is acquired according to several recommenda-
tions from the International Society of Electrophysiology

1https://www.myontec.com/products/mbody-3/
2https://plux.info/12-biosignalsplux

and Kinesiology (ISEK) [13]: an input impedance > 100
M, a common mode rejection ratio of 110 dB, amplified
with a gain of 1000, a band-pass filtered (10 to 500Hz)
and digitized at 1000 samples/s.

Fig. 1. MBody3 shorts

Fig. 2. BioPlux Sensors

C. Procedures

All participants realized the same protocol with identical
exercises, intensities and resting periods between each session.
Those characteristics were chosen to encompass different
features both physical and physiological, in order to surround
various movement conditions and patterns, and different levels
of neuromuscular activation. Exercises such as walking, run-
ning, strength exercises, cycling and stepping were included in
the protocol that was performed once. Thus, the participants
simultaneously wear both Myontec’s MBody3 wearable EMG
shorts and the traditional EMG electrodes as shown in Figs.1
and 2. The neuromuscular activity data was acquired using the
telemetric BioPlux system.

Then, the participants firstly walked on a treadmill (HP
COSMOS pulsar 3p, h/p/cosmos sports & medical gmbh) at a
selected pace. Then, without resting, they reached the intensity
of 9km/h, in which they run for five minutes. Afterwards, the
participants realized the strength exercise which consisted of
a bilateral knee flexion/extension e performed on an isoki-
netic dynamometer (Biodex System 3, Medical Systems, Inc.)
regarding specific parameters and one set of 5 repetitions of
a maximal isometric contract of the gluteal muscle against
resistance. Then, the participants performed a 5min lower limb

https://www.myontec.com/products/mbody-3/
https://plux.info/12-biosignalsplux


cycling exercise at 60rpm ± 2rpm at 120W (Monark 874E,
Monark Exercise AB). Finally, the last task was a stepping
exercise at the intensity of 60rpm for 5min.

D. EMG data collection

Muscle activation of all six muscle groups was assessed
using Myontec’s MBody3, an EMG wearable shorts, and by a
traditional EMG electrodes system. The electrodes embedded
in the textiles covered up three main muscle groups on both
lower limbs which were the gluteal maximus muscle, quadri-
ceps femoris muscle and the hamstrings muscle groups. The
wireless connection was established via Bluetooth BLE 4.0
communication, which collected the all-ready filtered EMG
data (25Hz). At the same time, a set of 6 Plux wireless
electrodes were attached to the gluteus maximus, vastus later-
alis and biceps femoris of both legs according to SENIAM
(Surface EMG for Non Invasive Assessment of Muscles)
Project recommendations [8].

E. EMG data processing

Relatively to EMG data processing, briefly, pattern recog-
nition requires four stages [9]:

Data acquisition

Pre-Processing

Feature Extraction and

Classification

After that and considering a supervised classification approach,
the process to classify patterns compromises other two stages:

1) Training - This phase encompasses using a set of time
series of EMG data from participants performing each
activity, being divided into time windows and afterwards
manually labeled.

2) Testing - This phase is going to evaluate the accuracy
of the model by giving a test dataset as the input, i.e.,
feeding the trained model with data that has not been
used for training purposes.

The test and training data sets are created by splitting the
data set, containing all the visualizations, randomly 30% for
testing data set and 70% for training data set. Both data was
processed and also tested with the Long short-term memory
(LSTM) network using MATLAB R2018b software. Firstly,

the surface EMG data that was recorded by the Myontec’s
MBody3 shorts was automatically processed and exported to
a laptop. The exported data was already filtered (rectified and
smoothed) to give an average 25Hz EMG output. Smoothing
was done by averaging, which calculates the average values
within frame intervals, thus reducing sample count. In order
to be able to compare data from both systems, the surface
EMG data recorded with the Plux had also to be filtered and
processed. To do so, the extracted raw data was processed
with a second Butterworth band-pass filter (20-300 Hz) and
down-sampled at 25Hz filtered signal.

IV. EXPERIMENTAL SETUP

The present section presents the experimental setup. Here
it is shown the different approaches taken as well as the data
setup. The test had two different approaches:

1) Comparing both systems using the values of all 6
channels

2) Comparing both systems using the values of only 2
channels

These two approaches needed to be done because the data
related to strength exercises, extracted through BioPlux, only
had 2 channels collecting data.

When preparing the data, the number of samples was
taken into consideration as well as the time of each sample
(approximately 4 seconds each). The number of samples are
indicated in the I and in the II, each corresponding to first and
second approaches, respectively.

TABLE I
NUMBER OF DATA SAMPLES FOR 1st APPROACH

Activities Number of samples
Running 256
Cycling 140
Stepping 57

TABLE II
NUMBER OF DATA SAMPLES FOR 2nd APPROACH

Activities Number of samples
Gluteo 18

Right Isokinetic 31
Left Isokinetic 32

V. EXPERIMENTAL RESULTS

The current section presents the accuracy results obtained
by the framework approach that was chosen in order to classify
activities as running, cycling, stepping as well as strength
exercises that used muscular groups as gluteal, hamstring and
quadriceps, for both MBody3 shorts (see a) and c) from Fig.
3 and Bioplux (see b) and d) from Fig.3 systems. In order
to assess the viability of Mbody3 shorts it was firstly tested
the accuracy of the model using data that came from Bioplux
which is a certified system who’s output is a reliable, reason
why it was used as our baseline. As it can be seen in Fig.3 for



Fig. 3. Confusion matrices presented from a) to c) are the results obtained using LSTM classifier.a and b are the results obtained from the first approach; c)
and d) are the results obtained from the second approach, for Mbody3 shorts and Bioplux, respectively.

the first approach, when the purpose was to identify running,
cycling and stepping, the accuracy of the model for Bioplux
data was 100% Fig. 3 b), slightly bigger than the accuracy
when using Mbody3 shorts data (98.6%) Fig. 3 a). For the
second approach, as described on section IV, where was tested
strength exercises, the obtained results shows that the accuracy
in both cases was worst when comparing with the results
from the first approach. Comparing only the two model in this
approach, as it occurred in the situation before, the accuracy
from Bioplux was slightly higher (83.3%) than Mbody3 shorts
(79.2%) (see Fig.3 d) and c), respectively.

VI. DISCUSSION

In this paper, we presented a deep learning method know
a LSTM network architecture for classification of human
activities using EMG data collected from two different systems
Mbody3 shorts and Bioplux . The aim of this work was to
assess the capability of identifying activities using a wearable
solution. Comparatively to a laboratory certified equipment as
is Bioplux, as it was already expected, the results were better
when testing with Bioplux data. Nevertheless, the difference
between the accuracy that was obtained with these two systems
is not high, 1.4% in the first approach and 4.1% in the second.
The biggest difference between these two approaches, besides



the type of activity, is that in the first one all six channels (3
muscle groups per leg) were used what means that the data
was composed of six different features contrarily to the second
approach that only had 2 channels collecting data, that is, 2
features per exercise.

VII. CONCLUSION

This research assess the feasibility of using a wearable
system for Human Activity Recognition. After running the
four tests, two per approach, we concluded that this wearable
device is as capable as a laboratory certified system with regard
to recognizing activities, in other words the potential of the
proposed framework is, as it can be seen by the results, good
as almost all activities were correctly classified.
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