
A Programming Model & Architecture for Adaptive
Virtual Reality Training

Kristof Overdulve, Ruben Simons, Lowie Spriet and Yasmine Wauthier
Immersive Lab, AP University of Applied Sciences and Arts

Antwerp, Belgium
Email: {firstname}.{lastname}@ap.be

Abstract—Virtual Reality (VR) is an effective medium for
developing and practicing skills. Combined with instructional
design, it can potentially have a more significant effect on learning
efficiency, learning curve, and retention than classical lectures
or instruction videos. As a result, the amount of VR training
has exploded. Building convincing and interactive VR training
experiences is expensive. Even after considerable investment, the
result is often a static learning experience that does not adjust
to the user’s needs and skill set and offers a small number of
training scenarios with no variations to improve replay value.

Therefore, we propose a programming model & architec-
ture for adaptive VR training experiences. From a deployment
standpoint, it works by launching VR training experiences from
training configuration files. These files describe training scenarios
from a well-defined semantic structure. Such an architecture
essentially decouples the problem of generating training sce-
narios, which developers can do without game development
experience, from the challenge of creating real-time, immersive
VR experiences. End-users can generate the training config-
uration files through a user-friendly training scenario editor.
Software developers can also use Artificial Intelligence algorithms
to procedurally generate new training scenarios which adapt
automatically to the user’s skill set.

Our programming model generalizes well to novel VR training
types and has been applied successfully to fire training, evacua-
tion training and the manipulation of industrial machinery.

Index Terms—Virtual Reality, adaptive VR training

I. INTRODUCTION

Virtual Reality (VR) has gained significant popularity since
introducing high-quality, affordable head-mounted displays
such as the HTC Vive and the Oculus Quest. It offers an
experience in which a three-dimensional environment or image
is shown on the VR display with a wide field of view, allowing
the headset’s wearer to feel wholly submersed in the virtual
world. It offers a compelling experience, allowing users to feel
as if they were in the virtual world instead of the physical
world in which they are during the experience.

VR can not only be used for entertainment purposes but
also for productive and creative applications [1]. Due to its
convincing depiction of reality, it is an effective medium
for developing and practicing skills [2]. Combined with in-
structional design, it can potentially have a more significant
effect on learning efficiency, learning curve, and retention than
classical lectures or instruction videos [3]. As a result, the
amount of VR training simulations has grown exponentially
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[4], [5]. Nevertheless, they suffer from several drawbacks
limiting their effectiveness.

• The controls through VR controllers seldom accurately
mimic the motor patterns the actual movements require.

• Depending on the artistic skills of the authors of the
simulations, the environments looks unrealistic.

• The training is often a static learning experience that is
not tailored to the userś skill set and offers little replay
value after the training has been completed [6].

Building VR training experiences is expensive and time-
consuming [7]. To increase the return on investment, there is
an urgent need for adaptive VR training experiences which
allow cost-effectively taking building blocks of a VR training
experience and using them to create a wide variety of scenarios
[8]–[10]. Educational designers can then create new training
scenarios to offer an extensive training program challenging
the prospective students with a multitude of learning goals
at their skill levels. Additionally, Artificial Intelligence (AI)
algorithms could automatically analyze the students’ skill
level to make training scenarios more challenging, reorder
the training scenarios or offer in-time feedback. Such adaptive
VR training experiences have a superior replay value, a higher
learning efficiency [11], [12], and a better return on investment
than static learning experiences.

This paper presents a programming model and software
architecture through which software developers can build
adaptive VR training experiences. Our programming model
generalizes well to novel VR training scenarios and has been
applied successfully to fire training, evacuation training, and
the manipulation of industrial machinery.

II. RELATED WORK

Our work is inspired by tools such as Zapier1 and IFTTT2,
allowing end-users with no programming knowledge to inte-
grate multiple apps. They do this by defining actions in reac-
tion to specific triggers. An example integration is “(trigger)
When I get a new lead on Facebook, (action) add the lead
to my MailChimp mailing list.”. These systems are similar
to our vision on adaptive VR training as they also focus on
allowing end-users to extend the power of existing components

1https://www.zapier.com
2https://ifttt.com/



Fig. 1. A screenshot of an Unreal Blueprint graph defining the behavior of
opening a door. This image is best viewed on a screen.

without requiring programming knowledge. Similar to our pro-
gramming model, these tools require carefully designing the
allowed events and reactions to be useful for end-users without
technical expertise. The field of reactive programming [13] and
frameworks such as MobX3 also inspire our work, allowing
listening to changes of defined properties and reactions to
those changes.

Our work is also related to the Blueprints Visual Script-
ing system in Unreal Engine4, shown in figure 1. It is
a graphical scripting system to build interactive games. In
Unreal Blueprints, gameplay elements are defined as nodes and
linked through a wide variety of events. However, as Unreal
Blueprints lets game designers build logic starting from low-
level 3D models, it is too complex and therefore unsuitable
for non-technical end-users. Our system operates on a much
higher level of abstraction by turning high-level game objects
into adaptive objects with high-level interactions.

Adaptive VR training is not new. Its efficiency and benefits
have repeatedly been demonstrated in various domains [8].
Prototypes have been built to create personalized experiences
to optimally help users reach the intended learning goals [10],
[14]–[20]. Although earlier work demonstrates the benefits of
adaptive VR training and details algorithms that customize
the experience, they provide very few details on how software
developers and VR agencies can actually build adaptive VR
training experiences. On the other hand, our work focuses
on the complementary and non-trivial problem of creating a
programming model & architecture through which software
developers and VR agencies can build generic adaptive VR
training experiences. Through this effort, we hope to broaden
the impact of adaptive VR training.

3https://mobx.js.org/
4https://docs.unrealengine.com/5.0/en-US/blueprints-visual-scripting-in-

unreal-engine/

III. BACKGROUND INFORMATION

We integrated our adaptive VR training framework with
the Unity5 game engine. Although our programming model is
easily transferrable to other game engines, this section gives a
brief overview of how Unity works and the concepts needed
to understand how our programming model works on top of
it.

Unity follows a component-based software design. Game
objects are the fundamental objects in Unity to represent char-
acters, light, 3D primitives, and so on. They act as a container
for components that implement the actual functionality of the
game objects. Unity contains a library of built-in components
to determine game objects’ positions, draw 3D primitives,
lights, and so on. Custom components are built through C#
scripts. Game objects and components depict a low-level
interface intended for game designers and developers. It is
often more convenient to reason about high-level entities, such
as a fire, encapsulating 3D primitives, animations, behavior
and interaction. Prefabs in Unity help in this regard. They turn
a game object with specific components and properties into a
high-level template that can be reused and instantiated multiple
times. Our programming model uses the prefab system to
instantiate high-level game objects and extend them with an
adaptive layer to add configurability for adaptive VR training
experiences.

IV. SYSTEM OVERVIEW

We first detail how our system for adaptive VR training
experiences works from a deployment point of view, we then
give an overview of the different high-level components in
the architecture, and how they interact. We then detail the
programming model SDK, the runtime implementation, and
conclude with how the reader can make their VR training
adaptive as a set of concrete steps.

A. Deployment architecture

The proposed architecture effectively decouples the process
of generating training scenarios from actually launching them
as a VR training experience, as depicted in figure 2. Different
types of processes can thus generate JSON data consumed by
our Adaptive Training Runtime in Unity: web-based GUIs to
allow end-user editing, AI algorithms to procedurally generate
new training scenarios, personalize training scenarios to indi-
vidual users, provide feedback, and so on. We used JSON as a
serialization format. The JSON training scenario could come
from a REST backend, or be packaged within the Unity app
as a file.

B. Component overview

The components of our adaptive VR training Software De-
velopment Kit (SDK) are depicted in figure 3. They consist of
two reusable components: the Adaptive Training Application
Programming Interface (API) described in section IV-C and
the Adaptive Training Runtime environment detailed in section

5https://unity.com/



Fig. 2. An illustration of the proposed deployment architecture. Any external
process can turn semantically correct JSON training scenarios into an actual
training experience. Here we show examples of a training editor with a GUI
and several AI algorithms.

IV-D responsible for running the adaptive layer. The use of the
SDK is detailed in IV-E. When developing a concrete training
application, a VR training Unity project with a set of reusable
prefab objects needs to be created, and a collection of Adaptive
Entity Definitions needs to be defined and attached to the
prefabs. Aside from connecting Adaptive Entity Definitions to
prefabs, they define contracts to assist in generating training
scenarios.

C. Programming model

This section depicts the semantic structure of the scenario
configuration file and details the Adaptive Training API.

The scenario configuration file follows a graph-like model
where vertices are Adaptive Entities, and the edges define
reactions on property changes of these entities. A simple
scenario defining an adaptive fire, a person, and connecting
them is shown visually in figure 4 and as JSON in appendix
A.

The adaptive entities, represented as vertices in the graph,
are high-level game objects with well-defined behavior, and
a high-level collection of adaptive properties. Crucial in the
success of the proposed programming model is that game de-

Fig. 3. The components involved in an adaptive VR training experience.
The reusable Adaptive Training API and Runtime engine are shown in blue.
The Adaptive Training API is used to define Adaptive Entities which are
deployed in Unity through the Adaptive Training Runtime. Additionally,
external processes can use the adaptive entities to generate training scenarios
to detect which properties are adaptive.

Fig. 4. A simple example of a scenario in which a person reacts after detecting
fire. The adaptive entities are AdaptivePerson and AdaptiveFire. Fire can have
a certain intensity, and the person has an adaptive state of panic. Once the
fire reaches an intensity of 10, the person panics.

velopers only expose high-level entities with concrete adaptive
properties. Only the properties that differ between training sce-
narios and the reactions to those adaptive properties should be
exposed. In addition to this, only by exposing exclusively high-
level interfaces can one expect end-users without technical
skills and AI algorithms to create scenarios. Good examples of
adaptive properties are properties that make a scenario less or
more complex and high-level properties such as the intensity of
a fire, whether a person panics or not, whether a door is open
or not, and so on. Less effective adaptive interfaces include
low-level properties (e.g., defining an animation opening the
door from a specific closed angle to an open angle around
a quaternion, the particles of a fire) and static behavior that
does not change between scenarios (e.g., when a lever is
manipulated, an alarm signal should sound). The Adaptive
Entities are transformed by the Adaptive Training Runtime
to Unity game objects when the scene loads and initialized
with the JSON data.

A “reaction” edge links two properties of Adaptive Entities:
an incoming property and an outgoing one. The edge listens
to the incoming property for changes in its value. If changed,
the edges evaluate a given condition and runs an action on the
outgoing property if the condition holds. The action changes
the property value of the outgoing property to a new value. In
our concrete example depicted in figure 4, the reaction edge
has the intensity of a fire as the incoming property value. When
the fire intensity is larger than or equal to the value of 20, the
edge fires a property change on the person to change its panic
property to true.

A reaction has the following parameters:
• Operator: when the incoming property has changed,

compare it with the given operator. Operators can be =
(equals), > (larger than), >= (larger than or equal to), <
(smaller than), or <= (smaller than or equal to).

• SourceValue: the value to which the operator compares
the incoming property.

• TargetValue: the value to which the target property
changes when the condition is true.

The reaction edge waits for a property change of the
incoming value. It then compares it to the SourceValue
using the given operator. The action fires when the comparison
holds. Upon firing the action, the outgoing property changes
to the TargetValue.



using UnityEngine;

public class AdaptiveContainer :
MonoBehaviour

{

[SerializeField]
private Object adaptiveScript;

}

[AdaptiveObject("Fire")]
public class AdaptiveFire : MonoBehaviour
{

[AdaptiveProperty("intensity")]
public float Intensity { get; set; }

}

Fig. 5. A simplified definition of the AdaptiveContainer class and an example
third-party class using the Adaptive Training API to make a Fire prefab
adaptive.

The public Adaptive Training API consists of the
AdaptiveContainer class and the AdaptiveObject
& AdaptiveProperty attributes. To make a high-level
game object adaptive before turning it into a prefab, the
AdaptiveContainer script needs to be attached to the
root of the game object. The adaptiveScript parameter
then needs to be initialized with a third-party class defining
the adaptive features of the entity through C# attributes. The
attributes are used to denote the class of the adaptive object in
the JSON data and the name and type of adaptive properties.
The public API is illustrated in figure 5.

Internally, the read JSON data in combination with the
adaptive objects and properties are converted into a structure
illustrated in figure 6 before being processed by the runtime
environment.

This programming model is sufficiently powerful to handle
many scenarios and sufficiently simple to allows AI algorithms
and end-users to understand and generate the scenario files. A
screenshot of an example graphical training scenario editor is
displayed in figure 7.

Fig. 6. The class diagram depicting the adaptive entities, reaction, and their
relationship.

Fig. 7. A sample GUI through which end-users can generate new training
scenarios. The data powering the interface comes from the Adaptive Object
and Adaptive Property attributes and the defined prefabs.

D. Adaptive Training Runtime

The implementation details of the Adaptive Training Run-
time framework driving the adaptive programming model are
shown in figure 8

The ScenarioMaster of the runtime framework needs to
be initialized when launching the scene. Upon initialization, it
reads the training configuration file from the defined JSON in-
put stream. This stream can be a file or a network stream. The
scenario master makes an inventory of all available prefabs and
lists the ones with the AdaptiveObject attribute to check
their value. The scenario master then instantiates the prefabs,
stores a reference to the instantiated objects, and initializes

Fig. 8. The implementation details of our adaptive programming model. The
input of this runtime environment is the collection of prefab objects and the
JSON training configuration file.



Fig. 9. A screenshot of our fire & evacuation training.

the adaptive properties with the values from the JSON data.
The list of references to instantiated prefabs is used by
the ScenarioValueUpdater worker to repeatedly check
the instantiated prefabs for changes in one of the adaptive
properties attached to the entity through adaptive objects. If
a property changes, it performs the actions defined in the
reaction(s) which have this property as incoming property.
The choice for a centralized worker module to check for
property changes, rather than giving this responsibility to
adaptive objects, allows intelligent scheduling of the worker
and alleviates the burden of requiring third-party developers
to remember notifying the central system.

E. Development process

The development process of an adaptive VR training expe-
rience consists of two stages.

1) Firstly a game developer builds a collection of game
objects to convert to high-level prefabs.

2) The game developer attaches an
AdaptiveContainer to the game object to be
made adaptive. We recommend keeping the adaptive
and fixed properties separated and naming the script
with adaptive properties Adaptive<Prefab name>.
A simple AdaptiveFire script is depicted in 5. The
properties annotated with the AdaptiveProperty
attribute are customizable properties used by the
Adaptive Training Runtime.

V. APPLICATIONS

1) Fire & evacuation training: Our first application, dis-
played in figure 9, is a fire & evacuation training experience.
It was built from a set of reusable components: fire, extin-
guishers, non-playable characters, and so on. The user per-
forming the VR training can take the role of designated safety
personnel, employee, or visitor of a building. We applied our
adaptive VR training SDK successfully to implement a wide
variety of evacuation & fire hazard scenarios covering multiple
difficulty factors: adapting the intensity of fires, the location
of fires, windows or doors being open or not, the presence of
fire extinguishers, people panicking, and so on.

Fig. 10. A screenshot of our industrial machinery training.

2) Industrial machinery training: Our second application,
displayed in figure 10, is a VR training program for operating
expensive and dangerous machinery found on industrial sites.
Students used this environment as a virtual training ground
to test and measure different components within the virtual
simulation during and after the COVID-19 pandemic. The
training simulates the physical equipment the students have
available to them in the lab of the University. Learning and
testing their skills in a virtual environment allows for more
freedom to learn about hazardeous scenarios that cannot be
simulated in real-life such as explosions, implosions, gas
hazards.

Our adaptive framework has been applied to allow teachers
to create a broad range of training scenarios where different
types of errors must be solved and multiple tasks must be
performed successfully. The training scenarios also specified
multiple levels of complexity with customized support and
feedback.

VI. DISCUSSION

We believe our programming model is broadly applicable to
a multitude of training scenarios. However, one could say that
any programming model attempting to give editing control to
designers and end-users will always end up as complicated
as Unreal Blueprints. If you choose to expose low-level 3D
meshes in an adaptive programming model, this point of view
is indeed valid. Therefore, we emphasize the importance of
only exposing the properties of high-level entities that require
adaptability. Good examples of adaptive properties are the
entities’ position in the world, properties through which we can
make the training scenario more difficult or more accessible,
and places where the interaction between multiple entities
depends on the training scenario. Using these guidelines, we
believe our model allows end-users editing without devolving
to a visual version of a programming language that only
technical software developers understand.

Even though adaptive VR training experiences significantly
improve the return on investment of VR training, developing
for photorealism or complex interactivity remains exception-
ally expensive. Especially in fields where the training re-
quires realistic human interactions or photorealism. We see



a lot of potential in VR training using 360-degree video or
Image-Based Rendering algorithms [21]. Such VR training
experiences would require a mix of modeled 3D primitives
and video-based imagery for complex interactions. Future
work includes more cost-effectively obtaining VR content for
training purposes.

VII. CONCLUSION

In this paper, we introduced a simple-to-understand and
efficient programming model and software architecture for
developing adaptive VR training experiences. This model
has the potential to significantly improve the efficiency and
replayability of VR training experiences by making them adap-
tive. The programming model has been shown to generalize
well to novel VR training experiences such as evacuation &
fire training, and manipulation of industrial machinery. We
believe it is widely applicable beyond these types of training
experiences. Nevertheless, to prove its applicability to a wide
range of scenarios, we welcome VR developers to apply our
programming model and propose enhancements where the
model was not expressive enough to meet their needs.
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APPENDIX A
A SIMPLE EXAMPLE SCENARIO AS JSON

{
"entities": [

{
"id": 1,
"class": "Fire",
"name": "Fire 1",
"position": "(0, 0, 0)",
"rotationOnPlane": "0",
"properties": [

{ "id": 1, "key": "intensity",
"value": "10" }

]
},
{
"id": 2,
"class": "Person",
"name": "Person 1",
"position": "(10, 0, 10)",
"rotationOnPlane": "30",
"properties": [

{ "id": 2, "key": "panic", "value":
"False" }

]
}

],
"reactions": [

{
"id": 1,
"condition": { "sourcePropertyId":

"1", "value": "20", "operator":
">=" },

"action": { "targetPropertyId": "2",
"newValue": "true" },

},
]

}


