Comparative Analysis of Machine Learning Models for Network Intrusion Detection

Landrain, A.

Télécom SudParis, France

Konstantinos Karampidis, Giorgos Papadourakis

Hellenic Mediterranean University Heraklion, Greece

Intrusion Detection

Network intrusion detection is a research domain aiming to identify malicious or unusual activities in computer networks.

Intrusion detection tend to plays a crucial role in the security of computer systems by detecting potential attacks and enabling proactive responses to them.

Conventional methods

- Signature-based
- Anomaly-based
- > Behavior-based methods.

Methodology

A benchmark dataset was chosen (CICIDS2017) so that the results could be comparable to other similar works.

Three different classifiers were utilized:

- ➤ Multi-Layer Perceptron (MLP)
- ➤ Support Vector Machine (SVM)
- ➤ Random Forest

Methodology – Dataset Description

The CICIDS2017 dataset was built by researchers at the University of New Brunswick. It consists of a five-day capture of network activity. Every day a new type of attack is orchestrated as in the next table.

Days	Labels						
Monday	Benign						
Tuesday	BForce,SFTP and SSH						
Wednesday	DoS and Hearbleed Attacks						
	slowloris, Slowhttptest, Hulk and						
	GoldenEye						
Thursday	Web and Infiltration Attacks Web						
	BForce, XSS and Sql Inject. In-						
	filtration Dropbox Download and						
	Cool disk						
Friday	DDoS LOIT, Bot-						
	net ARES, PortScans						
	(sS,sT,sF,sX,sN,sP,sV,sU,						
	sO,sA,sW,sR,sL and B)						

• 70% of the dataset was used as a training set and the rest 30% as a test set.

Experimental Setup

Unit	Description
Processor	Apple M2
Operating system	macOs Ventura Version 13.3.1
Packages	Tensorflow, Sklearn, Numpy, Pandas, Matplolib

Evaluation Metrics:

Accuracy
Precision & Recall
F1 Score

Models Parameters

- SVM (C=1, gamma=auto)
- RF(n_estimator=10, criterion=gini, max_depth=5, n_estimators=5, max_features=3)
- MLP(hidden_layer_sizes=(100,), activation=relu, batch_size=auto, learning_rate=0.001)

Experimental Results

Performance of Different Models over Botnet intrusion

Model	Acc	\Pr	Recall	F1	Execution (secs)
SVM	0.784	0.866	0.336	0.755	12.81 secs
\mathbf{RF}	0.977	0.933	0.995	0.975	$0.39 \mathrm{\ secs}$
MLP	0.891	0.848	0.706	0.862	$5.06 \mathrm{\ secs}$

Performance of Different Models over web-attacks

Model	Acc	\Pr	Recall	$\mathbf{F}1$	Execution (secs)
SVM	0.702	0.682	0.038	0.602	16.68
\mathbf{RF}	0.969	0.969	0.908	0.971	0.33
MLP	0.949	0.893	0.914	0.878	6.53

Future work

- ➤ Compare our findings against other similar works
- ➤ Deploy Deep Learning models

Thank you!