



# Enhancing Health Data Privacy through Anonymization and Security Techniques

Marios Vardalachakis<sup>1</sup>, Haridimos Kondylakis<sup>1</sup>, Manolis Tampouratzis<sup>1</sup>, Nikolaos Papadakis<sup>1</sup>

<sup>1</sup>Department of Electrical and Computer Engineering (ECE), Hellenic Mediterranean University (HMU)

Heraklion, GR 71004 Greece

(mtp237@edu.hmu.gr, kondylak@hmu.gr, tampouratzis@hmu.gr, npapadak@hmu.gr)

International Symposium on Ambient Intelligence and Embedded Systems

> 27 - 30 September, 2023 Sitia, Crete, Greece





# Agenda

- ➤ Introduction
- Privacy Concerns with Health Data
- ShinyAnonymizer: An innovative Approach for Anonymizing Health Data
- > Analyzing Encryption and Hashing Techniques
- Recommendation and Best Practices
- Conclusion





# Introduction

- The online storage and utilization of enormous quantities of personal health information have brought about via an age of innovation in healthcare which has altered both medical practices and academic studies.
- The large database of clinical information, featuring everything from illnesses to genetic info, offers an opportunity to significantly boost medical treatment, however it additionally has significant issues regarding privacy.
- □ Recent advances in technology have raised the value of solid health data privacy to the forefront, preserving data security and confidentiality.
- □ In addition to basic confidentiality, health data privacy requires ethical values, promotes reliability, and encourages equal access to healthcare for everyone.





# **Privacy Concerns with Health Data**

According to the extremely complex aspect of the information that are involved, the constantly evolving technological surroundings, with the extensive variety of medical systems, ensuring confidentiality of health data is filled with privacy concerns. Some of the privacy concerns are:

•Data proliferation: The fast technological advancement of healthcare records and the growth of mobile devices generates an enormous amount of medical information. It is a huge problem to control and secure this data among various devices and platforms while preserving privacy.

•Data Linkage and Re-identification: When data is de-identified, it can always able to re-identify someone through combining it with additional data gathered from various sources or by applying modern steps. It is challenging to maintain information's value while offering complete anonymity.

•**Third-Party Sharing:** Health data may be provided with third parties, such insurance providers, scientists, and technological companies. Managing how these entities utilize and secure the data can prove difficult especially if the data moves between borders where various privacy laws applied.

•Emerging Technologies: Significant concerns regarding privacy are presented by the utilization of modern technologies like AI and machine learning in the health care sector. Algorithms created with health data may accidentally reveal confidential data about certain individuals.



### Role of Anonymization, Hashing, and Data Encryption in HealthCare

| Aspects       | Anonymization                                      | Hashing                                                 | Encryption                                       |
|---------------|----------------------------------------------------|---------------------------------------------------------|--------------------------------------------------|
| Role          | Preserving privacy                                 | Ensuring data<br>integrity                              | Protecting data confidentiality                  |
| Function      | Removing or altering<br>identifiers                | Creating fixed-<br>length hash values                   | Transforming data into unreadable ciphertext     |
| Use Cases     | Research with privacy concerns                     | Data integrity<br>verification                          | Secure data transmission<br>and storage          |
| Reversibility | Partially reversible                               | One-way function;<br>non-reversible                     | Reversible with proper decryption                |
| Security      | Privacy enhancement;<br>risk of re-identification  | Data integrity<br>protection; resistant<br>to tampering | Controlled access;<br>safeguarding from breaches |
| Examples      | De-identified research<br>datasets                 | Verifying file<br>authenticity                          | Secure communication channels; encrypted files   |
| Challenges    | Balancing utility and privacy; re-ID risk          | Potential for hash<br>collisions; weak<br>algorithms    | Key management; potential<br>performance impact  |
| Ethical Focus | Privacy preservation;<br>data utility for research | Data integrity and authenticity                         | Data confidentiality and security                |





# ShinyAnonymizer: An innovative Approach for Anonymizing Health Data

The need for user-friendly anonymization tools has become increasingly evident as organizations and individuals grapple with the complexities of data privacy and compliance. Here are some key points highlighting the necessity of such tools:

•**Rising Privacy Concerns**: In an era of heightened awareness about personal data privacy, individuals and organizations are under pressure to protect sensitive information. User-friendly anonymization tools empower both data controllers and individuals to safeguard their data without requiring extensive technical expertise.

•**Regulatory Mandates:** Stringent data protection regulations such as the General Data Protection Regulation (GDPR) and the Health Insurance Portability and Accountability Act (HIPAA) impose strict requirements on handling personal information. User-friendly tools enable compliance by simplifying the anonymization process and reducing the risk of non-compliance penalties.

•Diverse Data Handlers: Not all users working with data are data scientists or cybersecurity experts. Researchers, analysts, and administrators who lack in-depth technical knowledge also need to perform data anonymization. User-friendly tools cater to this diverse audience, enabling a wider range of users to effectively Anonymize data.

AmiEs-2023



Intro to ShinyAnonymizer



**ShinyAnonymizer** is a cutting-edge data privacy solution designed to address the critical need for safeguarding sensitive information while maintaining data utility. It is a tool enabling non-expert users to combine of state of the art privacy models :

- Anonymization privacy models
- Hashing privacy models (MD5,SHA512,CRC32,XXHASH64)
- Data Encryption (DES,X-DES,BLOWFISH,AES512)

Multiple data analysis visualization paradigms and statistics.

• Pie charts, bar charts, area charts, histograms and scatter plots





### **The ShinyAnonymizer Tool Interface**

| oaded Data                                                                  | Loaded Data Encrypted Data Hashed Dat | a Anonymized Data Visua | alze the Data Summary Statisti | 5                    |                 |
|-----------------------------------------------------------------------------|---------------------------------------|-------------------------|--------------------------------|----------------------|-----------------|
| PatientCorePopulatedTable                                                   | Show 25 • entries                     |                         |                                |                      | Search          |
| elect columns to display                                                    | PatientiD                             | PatientGender           | PatientRace                    | PatientMaritalStatus | PatientLanguage |
| Patient/D Patient/Gender Patient/Race Patient/MaritalStatus PatientLanguage | FB2A8823-C9D0-4D09-8464-498F08982F0F  | Male                    | Unknown                        | Married              | Icelandic       |
| elected Encrypted Algorithm:                                                | 64162895-EB72-4E28-8E77-8050871498CE  | Male                    | African American               | Separated            | English         |
| ] DES<br>] XDES<br>] Blowfish                                               | D822A4D9-7E4D-485C-916A-9CD1386507FB  | Female                  | Asian                          | Married              | English         |
|                                                                             | 6E70D84D-C75F-477C-8C37-9177C3698C66  | Male                    | White                          | Married              | English         |
| AE5512                                                                      | C8556CC0-32FC-4CA5-A8CD-9CCF38816167  | Female                  | White                          | Married              | English         |
| exected Hashing Algorithm:<br>MD5                                           | 7FD13988-E58A-4A5C-6580-89AC200950FA  | Male                    | White                          | Married              | Spanish         |
| _ SHA512                                                                    | O50FE675-CA52-4C55-A233-F4827E94987F  | Male                    | Asian                          | Married              | Spanish         |
| ORG32<br>X0HASH54                                                           | B39DC5AC-E003-4E6A-9186-FC07625A1285  | Female                  | White                          | Married              | English         |
| elected Anonymizing Algorithm:                                              | FA157FA5-F488-4884-8F87-E144630D595C  | Female                  | White                          | Single               | English         |
| Suppression                                                                 | 87E9FC4C-5182-4A34-954E-CEF5FC07E96D  | Female                  | Unknown                        | Single               | Engish          |
| Generalization                                                              | 1A40AF35-C6D4-4D46-B475-A15D54E8A9D5  | Male                    | White                          | Married              | English         |
| bottom Coding                                                               | DA6CECFF-DE13-4C4C-919F-64E1A2876C9D  | Male                    | Asian                          | Divorced             | English         |
|                                                                             | 0A9BA3E4-CF3C-49C4-9774-5EEA2EE7D123  | Male                    | White                          | Single               | Spanish         |
|                                                                             | 7C788499-7796-4848-A027-9FCDC4C0DAD8  | Male                    | White                          | Married              | English         |
|                                                                             | C5485AAD-98E8-472D-8AA0-638D9F38D024  | Fenale                  | African American               | Single               | Unknown         |
|                                                                             | 69850824-3269-4D12-A9DD-8932D640E26E  | Female                  | White                          | Married              | English         |
|                                                                             | D8853AA2-7953-4477-9EA4-68400EBAAC5C  | Male                    | African American               | Unknown              | English         |
|                                                                             | DB92CDC6-FA9B-4492-BC2C-0C588AD78956  | Male                    | Uniksiowin                     | Single               | icelandic       |
|                                                                             | 258786AF-0F99-478C-9CFA-0EA607E45834  | Male                    | White                          | Married              | English         |





# **Key Features and Benefits**

| Key Features             | Benefits              |
|--------------------------|-----------------------|
| Data Anonymization       | Regulatory Compliance |
| Flexible Techniques      | Data Privacy          |
| Preservation of utility  | Risk Mitigation       |
| Automated Processing     | Ethical Data Use      |
| Customization            | Research and Analysis |
| Audit trails             | Customer Trust        |
| Integration Capabilities | Efficiency            |
| User-friendly-Interface  | Scalability           |
|                          | Transparency          |
|                          | Adaptability          |





# Access To State-of-the-Art Anonymization Techniques

**ShinyAnonymizer** stands out by providing access to state-of-the-art anonymization techniques that ensure the effective transformation of sensitive data while preserving its usability. The tool offers a range of advanced methods such as masking, suppression, generalization, and perturbation, allowing organizations to tailor their anonymization approach to the specific nature of their data.

#### Benefits :

- Customized Privacy Measures: ShinyAnonymizer enables organizations to select the most appropriate anonymization technique for each type of data, ensuring that privacy measures are aligned with the sensitivity of the information.
- Enhanced Data Utility: By utilizing cutting-edge anonymization techniques, ShinyAnonymizer ensures that the Anonymized data retains its value for analysis, research, and decision-making. This maintains the utility of the data without compromising privacy.
- Adaptation to Regulations: The availability of diverse anonymization techniques allows organizations to adapt their data processing practices to various regulatory requirements, ensuring compliance with data protection laws such as GDPR, HIPAA, and more.
- ✓ Mitigation of Re-Identification Risks: Advanced anonymization techniques reduce the risk of reidentification, ensuring that even if external data is combined, the original identities of individuals cannot be easily uncovered.





# Integration of Data Analysis Visualization Paradigms

*ShinyAnonymizer* goes beyond traditional anonymization solutions by seamlessly integrating advanced data analysis and visualization paradigms. This unique feature allows organizations to not only Anonymize sensitive data but also gain valuable insights through interactive visualizations, enhancing the overall utility of Anonymized datasets.

#### **Benefits**

**Data Exploration:** ShinyAnonymizer integration of data analysis and visualization paradigms enables users to explore Anonymized data interactively. This empowers data analysts, researchers, and decision-makers to uncover patterns and trends without compromising individuals' privacy.

**Real-Time Insights:** The integration of visualizations within the anonymization process facilitates real-time insights into the Anonymized data, supporting faster and more informed decision-making.

**Communication of Findings**: Visualizations enhance the communication of findings derived from Anonymized data, making it easier for teams to convey insights to non-technical audiences.

**Data-Driven Decisions:** By offering dynamic visual representations of Anonymized data, ShinyAnonymizer empowers organizations to make data-driven decisions while upholding privacy standards





# Exploring Encryption And Hashing Techniques

*ShinyAnonymizer* takes data security to the next level by offering a comprehensive exploration of encryption and hashing techniques. These techniques not only ensure data privacy during the anonymization process but also bolster the protection of sensitive information against unauthorized access and breaches.

#### **Benefits:**

**Strong Data Protection:** ShinyAnonymizer integration of encryption and hashing techniques adds an extra layer of security to the anonymization process. This safeguards the data not only from re-identification but also from potential breaches.

**Confidentiality:** Encryption techniques render the data unreadable to unauthorized users, ensuring that even if the Anonymized data is intercepted, it remains indecipherable and confidential.

**Integrity Verification:** Hashing techniques allow for data integrity verification, enabling users to confirm that the Anonymized data has not been tampered with during the anonymization process.

**Selective Access:** Encryption and hashing can be used to control access to specific data subsets. This provides organizations with the ability to share only the necessary information while keeping the rest of the data protected.

**Enhanced Trust:** By incorporating encryption and hashing techniques, ShinyAnonymizer builds trust among stakeholders by demonstrating a commitment to robust data security practices.

**Compliance with Regulations**: The utilization of encryption and hashing aligns with regulatory requirements for securing sensitive information, contributing to compliance with data protection laws and standards.





# The role of Encryption and Hashing in Data Security

• Encryption and hashing are fundamental techniques in the realm of data security, playing critical roles in protecting sensitive information from unauthorized access, breaches, and tampering.

• These techniques serve as key components in safeguarding data privacy and maintaining the integrity of digital assets. Here's an overview of the roles of encryption and hashing in data security.

| Encryption                                 | Hashing                                             |
|--------------------------------------------|-----------------------------------------------------|
| Confidentiality :                          | Data Integrity:                                     |
| Encrypts data using cryptographic          | Generates a unique hash value for input data        |
| techniques and keys.                       | using a one-way function, ensuring data integrity.  |
| Ensures only unauthorized parties with     | Detects tampering or alterations in data by         |
| the decryption key can access and          | noting changes in the hash value.                   |
| decipher the data.                         |                                                     |
| Prevents unauthorized access to sensitive  | Useful for password security by storing hashed      |
| information ensuring data confidentiality. | passwords, preventing exposure even in case of      |
|                                            | data breaches.                                      |
| Data Protection:                           | Digital Signatures:                                 |
| Secures data during transmission and       | Ensures the authenticity and integrity of digitally |
| storage, mitigating the risk of data       | signed content by using hash values to verify       |
| breaches.                                  | unchanged data.                                     |
| Guards against potential breaches ,as      | Supports non-repudiation by enabling                |
| stolen encrypted data remains unusable     | verification of the origin of signed data.          |
| without the decryption key.                |                                                     |
| Secure Communication:                      | Efficient Data Retrieval:                           |
| Ensure secure Communication by             | Used in data structures like hash tables for quick  |
| preventing eavesdropping and               | data retrieval based on unique identifiers.         |
| unauthorized access to transmitted data.   |                                                     |
| Protects against man-in-the-middle-        | Enables efficient data access storage and storage   |
| attacks where attackers intercept and      | in databases and file systems.                      |
| manipulate data in transit.                |                                                     |
| Regulatory Compliance:                     |                                                     |
| Aids organizations in complying with data  |                                                     |
| protection regulations that mandate        |                                                     |
| encryption for sensitive information.      |                                                     |





# Encryption Techniques: Benefits and Drawbacks

•Throughout the Anonymization procedure strong encryption techniques are employed to enhance data security and privacy in ShinyAnonymizer. Various algorithms for encryption maintain essential data safe against illegal access and attacks.

•ShinyAnonymizer also employs symmetric encryption to secure data, using a single secret key for both encryption and decryption. This technique is well-suited for protecting data privacy within the anonymization process.

| Encryption Algorithm | Benefits                                      | 10                                                                    |
|----------------------|-----------------------------------------------|-----------------------------------------------------------------------|
| DES                  | Early Standard; Historical significance       | Short -56 bit key susceptible to<br>brute-force attacks               |
|                      | GovernmentEndorsement                         | Vulnerable for Modern<br>Cryptanalysis Techniques                     |
|                      | Educational And Research Value                | Insecure for today's landscape                                        |
|                      |                                               | Limited Key Length                                                    |
|                      |                                               | Block size limitations                                                |
| X-DES                | Enchanted Security Over DES                   | Performance impact due to<br>multiple encryption rounds               |
|                      | Key length variation for flexibility          | Key length limitations                                                |
|                      | Compatibility with existing DES systems       |                                                                       |
|                      | Migration Path From DES                       |                                                                       |
| BLOWFISH             | Speed And Efficiency                          | Fixed-64 block size may limit<br>performance                          |
|                      | Variable Key and Adoptability                 | Security Concerns against modem<br>Cryptanalysis                      |
|                      | Open Design with public Scrutiny              | Largely replaced by more<br>advanced encryption algorithm like<br>AES |
| AES-512              | Strong Security against modern attacks        | Fixed block size of 126 bits may<br>require additional measures       |
|                      | Variable key lengths and tailored<br>Security |                                                                       |
|                      | Efficient Performance                         |                                                                       |
|                      | Global Adaption                               |                                                                       |





# Hashing Techniques: Benefits and Drawbacks

• *ShinyAnonymizer* integrates advanced Hashing techniques to verify the integrity of data and enable fast data retrieval.

| Hashing Algorithm | Benefits                                                   | Drawbacks                                        |
|-------------------|------------------------------------------------------------|--------------------------------------------------|
| MD5               | Fast and efficient for short<br>messages                   | Vulnerable to collision attacks                  |
|                   | Widely supported and<br>implemented                        | Cryptographic weaknesses have<br>been identified |
|                   |                                                            | Lack of resistance to modern<br>cryptanalysis    |
| SHA512            | Strong Security and Resistance                             | Slower than MD5 for Hashing                      |
|                   | Large output size(512 bits) for<br>increased security      | Higher Computational overhead                    |
|                   | Widely used and accepted standard                          | Potential for Hash Collisions                    |
| CRC32             | Fast and efficient for error checking                      | Designed for error-detection and<br>Security     |
|                   | Simple and lightweight                                     | Phone to collision Attacks                       |
|                   | Commonly used in checksums and data integrity verification | Limited Security Properties                      |
| Xxhash64          | Very fast hashing algorithm                                | Not Suitable for Cryptographic<br>Applications   |
|                   | Low memory usage                                           | Not designed for Data Security                   |
|                   | Good distribution properties for<br>hash tables            | Lack Of Collision Resistance                     |





# The growing Concern For Personal Data Confidentiality

The dramatic technological advancement of the world, where data is created, obtained, and exchanged on a scale that is unparalleled, is the root of increasing worries for privacy and confidentiality. The risk of fraud, illicit access, and data leaks involving highly personal data are ultimately contributes to all this fear. The concern is mainly brought on with a number of aspects:

• Data breaches have revealed thousands of people's info, such names, addresses, credit card numbers, and occasionally health records. Several notable data breaches included big companies, governments, and organizations. The general trust in data security processes gets harmed by such events.

• **Cybercrime:** The increasing number of technological crimes that include phishing, identity theft, and attacks using ransomware highlights how accessible sensitive data is to attackers along with other criminals who seek to profit or damage operations.

• Persistent Gathering of Information: In order to enhance their products, services, and promotions, organizations obtain an enormous amount of personal information, notably in the IT and advertisement sectors. Problems concerning the use and protection of the data could come up as an outcome of this gathering.

• Lack of Controlling: Individuals usually have little involvement about the way their data is obtained, used, or released. Fear regarding data privacy along with a sense of powerlessness could arise from this absence of visibility.

# AmiEs-2023



# Recommendations and Best Practices for Data Protection through Encryption and Hashing

•It is essential to comply with identified guidelines and utilize suggested steps when using hashing and encryption algorithms for protecting information.

| Recommendations and Best Practices for |                            |
|----------------------------------------|----------------------------|
| Data Protection through Encryption And |                            |
| Hashing                                |                            |
| Encryption:                            | Hashing:                   |
| Choose Strong Algorithms               |                            |
| Key Management                         |                            |
| Key Length                             |                            |
| Use Authenticated Encryption           |                            |
| Secure Implementation                  |                            |
| Data In transit and at Rest            |                            |
|                                        | General Best Practices:    |
| General Best Practices:                | Risk Assessment            |
| Risk Manipulation                      | Data Minimization          |
| Data Manipulation                      | Regular Updates            |
| Regular Updates                        | Secure Key Storage         |
| Secure Key Storage                     | Auditing And Monitoring    |
| Auditing and Monitoring                | Compliance And Regulations |
| Compliance with Regulations            | User Education             |
| User Education                         | Testing and Validation     |
| Testing and Validation                 | Backup And Recovery        |
| Backup and Recovery                    |                            |





### Conclusions

- □ In the ever-evolving landscape of data security, the paramount importance of encryption and hashing cannot be overstated. These two distinct yet synergistic techniques serve as the cornerstones of robust data protection strategies, collectively fortifying the confidentiality, integrity, and authenticity of sensitive information.
- Encryption, with its ability to render data unreadable to unauthorized parties, acts as a safeguard against potential breaches and unauthorized access.
- By transforming plaintext into an incomprehensible format, encryption ensures that only those possessing the decryption key can unveil the original content. This process not only bolsters data confidentiality but also helps organizations meet stringent regulatory requirements, securing their legal standing and reputation.
- Even the slightest modification to the input data generates a distinct hash value, alerting to tampering attempts. Hashing plays a vital role in ensuring the reliability of digital transactions, authenticating digital signatures, and enhancing password security.
- Combining, encryption and hashing within data protection strategies results in a multi-faceted defense mechanism. Encryption safeguards data at various stages, encompassing storage, transmission, and processing. Concurrently, hashing verifies the integrity of data, acting as a sentinel against tampering and unauthorized alterations. This harmonious fusion of techniques creates a fortified fortress of security, contributing to the establishment of trust among stakeholders and the mitigation of potential risks.

# AmiEs-2023



### Bibliography

[1] Vardalachakis, Marios, et al. "ShinyAnonymizer: A Tool for Anonymizing Health Data", 5<sup>th</sup> International Conference on Information and Communication Technologies for Ageing Well and e-Health (ICT4AWE), pp. 325-332 (2019).

[2] Vardalachakis M., Kondylakis H., Tampouratzis M., Papadakis N. "Anonymization, Hashing and Data Encryption Techniques: A Comparative Case Study" 3<sup>rd</sup> International Conference on Mathematics and Computers in Science and Engineering (MACISE 2023), Ierapetra, Crete, Greece, 25-27 August 2023.

[3] Olatunji, Iyiola E., et al. "A review of anonymization for healthcare data." Big data (2022).

[4] Majeed, A., & Lee, S. (2020). Anonymization techniques for privacy-preserving data publishing: A comprehensive survey. IEEE Access, 9, 8512-8545.

[5] Abidalrahman, M., Jararweh, Y., Tawalbeh, L. (2011) AES512: 512-bit Advanced Encryption Standard Algorithm Design and Evaluation. Information Assurance and Security (IAS).

[6] Boland, T., & Fisher, G. "Selection of hashing algorithms". NIST Technical Papers (June 2000).





# Enhancing Health Data Privacy through Anonymization and Security Techniques

Marios Vardalachakis<sup>1</sup>, Haridimos Kondylakis<sup>1</sup>, Manolis Tampouratzis<sup>1</sup>, Nikolaos Papadakis<sup>1</sup>

<sup>1</sup>Department of Electrical and Computer Engineering (ECE), Hellenic Mediterranean University (HMU)

Heraklion, GR 71004 Greece

(mtp237@edu.hmu.gr, kondylak@hmu.gr, tampouratzis@hmu.gr, npapadak@hmu.gr)

# Thank you for your Attention!! Questions ??