

AUTOMATING CLASSROOM PROCESSES: ASSESSING THE EFFICIENCY AND EFFECTIVENESS OF ROBOT ASSISTANTS IN HIGHER EDUCATION MANAGEMENT TASKS

Authors: **Fuad Budagov**, Janika Leoste, Mohammad Tariq Meeran, Tarmo Robal IT College | School of Information Technologies, Tallinn University of Technology

PRESENTATION AGENDA

- Background
- Research Question
- Methodology
- Results
- Limitation and Future Direction
- Conclusion

DEFINITIONS

Robot Assistant

- A robot designed to assist
 humans in various tasks, improving
 efficiency and effectiveness in both
 professional and personal contexts.
- Semi-autonomous Robot Assistant

 A robot that operates with some degree of autonomy but still requires human intervention for complex tasks or decisions.

BACKGROUND

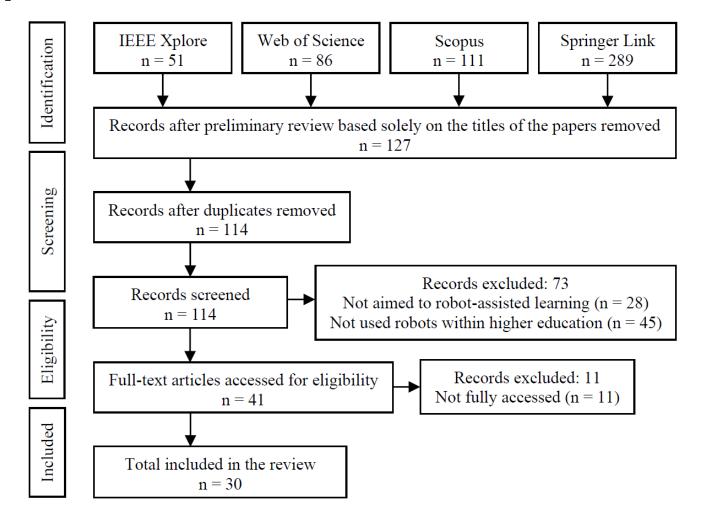
HE challenges due to changing educational needs and expectations:

- Inefficiencies in addressing diverse student needs and teacher workloads.
- Teacher shortages and demand for personalized instruction strain institutions.
- Administrative tasks overwhelm educators, reducing the focus on impactful teaching.
- Limited, quick, personalized help for students.

Aim: to assess the **efficiency** of robot assistants in **reducing administrative** workload.

RESEARCH QUESTION

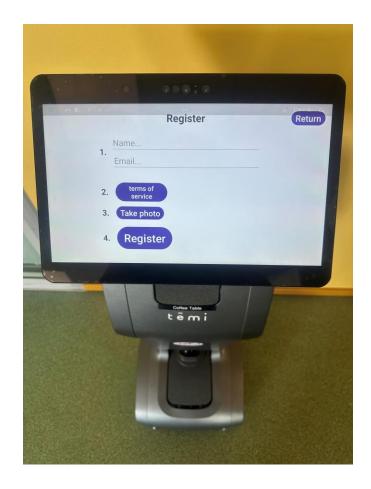
1. How **effective** are robot assistants in **automating administrative** tasks like **attendance monitoring** in higher education?

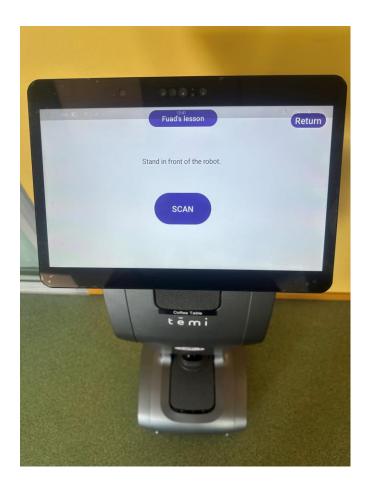


METHODOLOGY

Electronic databases	IEEE Xplore Web of Science Scopus SpringerLink			
Type of searched literature	Journal and Conference Papers			
Search string	("robot assistants" OR "robotic assistant" OR "educational robots" OR "robot-assisted learning" OR "robotic teaching assistants" OR "aibased robots" OR "social robots" OR "humanoid robots" OR "telepresence robots" OR "robot teaching roles") AND "higher education"			
Language of the study	English			
Publication period	From January 2019 to February 2024			

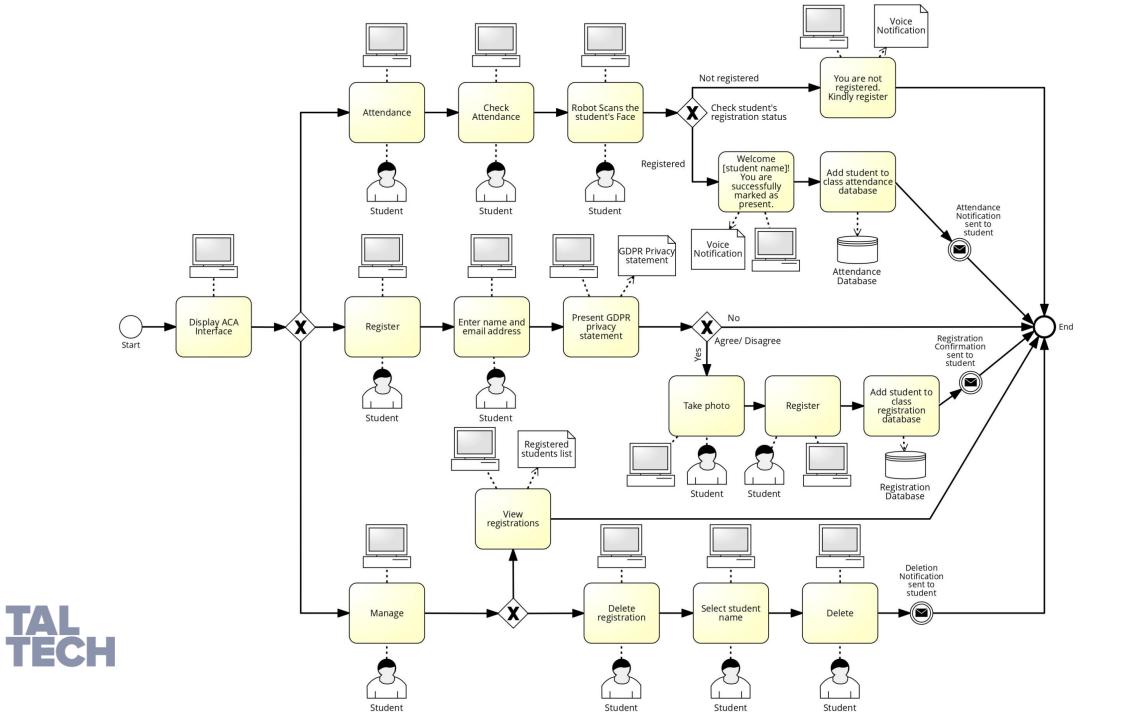
METHODOLOGY





TALLINN UNIVERSITY OF TECHNOLOGY

ATTENDANCE CHECK APPLICATION (ACA) IN TEMI ROBOT



TALLINN UNIVERSITY OF TECHNOLOGY

METHODOLOGY

- Combined qualitative and quantitative approaches.
- Collected numerical data from 67 student questionnaires for statistical analysis.
- Included free-form comments and observations for in-depth feedback.
- Mixed-methods approach ensured comprehensive and detailed assessment.

SAMPLE SIZE

Table 1. Demographic information

Age Group	Male	Female	Prefer not to say	Total
Under 18	0	0	0	0
18-24	32	7	1	40
25-34	14	4	0	18
35-44	6	2	0	8
45+	1	0	0	1
Total	53	13	1	67

DESCRIPTION OF THE QUESTIONNAIRE

- Administered via Microsoft Forms with 11 questions.
- Eight questions used a five-point Likert scale to assess usability and comfort.
- Included one free-form comment section for detailed feedback.
- Two questions collected age and gender information.

RESULTS

Category	Aim of robot assistant
For the teaching process	Allows students and teachers to attend classes remotely
	Attendance monitoring through facial/fingerprint recognition
	Providing real-time feedback
	Enhancing engagement with gamification and robotics
	Automating administrative tasks
For the lecturer	Robot as examiner
	Exam supervision
	Plagiarism detection
the	Tutoring and assessment support via LMS
For	Improve psychological and social communication during oral assessment
	Provides support for learning difficulties and disabilities
uder	Exam preparation
For the student	Transcribing faculty lectures
	Emotion detection of students to provide motivation
	Enhance group collaboration

RESULTS

How **effective** are robot assistants in **automating administrative** tasks like **attendance monitoring** in higher education?

- Ease of Use: 100% of students found ACA very easy or somewhat easy to use (n = 67).
- Speed: 90% of students reported ACA sped up the attendance process (n = 60).
- Interaction: 90% found ACA pleasant to interact with (n = 60).
- Simplicity: 93% found ACA use straightforward (n = 62).
- Comfort: 81% felt comfortable using ACA (n = 54).
- Privacy Concerns: 55% had concerns or no clear opinion on privacy issues (n = 37).
- Future Use: 73% willing to use ACA in the future (n = 49).
- Benefit: 78% considered ACA beneficial for managing attendance (n = 52).

DISCUSSION

- **Effectiveness**: Positive feedback on using the TEMI robot with ACA for automating attendance in higher education.
- Student Willingness: 73% of participants (n = 49) are willing to use the technology for class registration.
- Expanded Functionalities Needed: Positive feedback suggests the need for additional features like managing assignments and scheduling.
- **Enhanced Interaction**: The robot's ability to greet students by name creates a personalized, welcoming atmosphere, impractical for lecturers in large classes.

LIMITATIONS AND FUTURE DIRECTIONS

- Conducted over a single week, limiting the acceptability of findings.
- Focused only on student feedback, excluding lecturers' perspectives.
- Short duration prevented assessment of long-term effectiveness.
- Extend study to a full 16-week semester for more extensive data.
- Include feedback from both lecturers and students.
- Implement **initial** registration in the **first week**, followed by quick **face scans** for attendance.
- Provide QR codes as an alternative for those not using facial recognition.
- Enhance automation with automatic face recognition to eliminate need for physical interaction.

CONCLUSION

- **Enhancing Educational Practices**: Utilizing robot assistants for attendance checks shows promise for improving educational methods.
- Positive Feedback: Initial findings indicate strong support for robot assistants, highlighting their potential in HE.
- Need for Further Exploration: Ongoing research is crucial to address technical challenges and ensure successful adoption.
- Expanding Functionalities: Future developments should include broader administrative tasks and personalized learning experiences to maximize benefits in HE.

PAPERS

#	Paper Title	Contribution	Status	Date/ Location	Journal/Conference	Category	Period
1	Using telepresence robots for remote participation in technical subjects in higher education	Co-author	Published	June 2023 Tallinn, Estonia	8th Conference on Smart Learning Ecosystems and Regional Development	3.1	Pre-PhD studies
2	Enhancing Inclusivity in Higher Education: The Case of TEMI Semi- Autonomous Robot for Special Needs Students in Technical Courses	First author	Published	September 2023 Crete, Greece	International Symposium on Ambient Intelligence and Embedded Systems	5.2	First year of PhD
3	The Opinions of Basic School Students Regarding the Use of Telepresence Robots for Teaching and Learning	Co-author	Presented	April 2024 Koblenz, Germany	15th International Conference on Robotics in Education - RiE 2024	3.1	First year of PhD
4	The Potential of Using Social Service Robots in the Healthcare Environment	Co-author	Accepted	June 2024 Valencia, Spain	10th International Conference on Higher Education Advances (HEAd'24)	3.1	First year of PhD
5	A Systematic Literature Review on Applicability of Robot Assistants in Higher Education	First author	Accepted	June 2024 Salamanca, Spain	14th International Conference on Methodologies and Intelligent Systems for Technology Enhanced Learning	3.1	First year of PhD
6	Attendance Check of Students via Robot Assistant in Higher Education Classes	First author	Submitted	September 2024 Tallinn, Estonia	27th International Conference on Interactive Collaborative Learning	3.1	First year of PhD

TALLINN UNIVERSITY OF TECHNOLOGY

THANK YOU!

taltech.ee/en