

Integrating EMC Measurement, Power Consumption, and Sustainability into Electronics Engineering Education



#### Janne Mäntykoski

**Senior Lecturer** 

- MSc (Electrical Engineering)
- Teacher for over 20 years
- Fields of interest include Programming and electronics (also FPGAs and Digital Asics)
- Janne.Mantykoski@metropolia.fi



### Electromagnetic Compatibility (EMC) course, worth 15 ECTS

- EMC lectures and labs
- PCB design for embedded system: prototype to breadboard, milled PCB: Buck regulator with external inductor to create EMI

• RF lectures and labs





### EMC measurements Currently

Precompilance EMC measurements:

- RF radiated emissions and Conducted emissions
- ESD

Pin-point emissions: EMC scanner: Example PCB and PCB designed by students Shielding



#### EMC measurements - RF radiated emissions in an open area test site

No ground plane EMI test receiver

| FILE                          | FREQUENCY<br>LEVEL PK+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 999.0000000 MHz<br>29.38 dBµV | Peak                                                                     |
|-------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|--------------------------------------------------------------------------|
| PRINT<br>HELP<br>MODE<br>MENU | -15 0 10 20 30<br>Limit Check 100 MHz FA<br>90 dBjUne EN55011 6 QP : FA<br>80 dBjV<br>70 dBjV<br>60 dBjV<br>EN55011 6 QP 3m RAD<br>40 dBjV<br>20 dBjV<br>40 | 40 50 60 70 85                | Next Peak<br>Mode <<br>CDS ><br>Add to<br>Peak List<br>Tune to<br>Marker |





#### **EMC** measurements – RF **Conducted** emissions

Line Impedance Stabilizing Network (LISN) Inexpensive spectrum analyzer – no Quasi-Peak

> RBW Mkr 1 at 1.5231MHz 35.1 dBuV Ref: 77.0dBuV RBW Auto Man RBW 1 MHz RBW 300 kHz RBW 100 kHz Stop: 30.0MH Center: 15.075MHz Start: 150.0kHz aan 500 0ms RRW: 300kHz RBW: 300kHz





# EMC measurements – ESD immunity

Vertical plane Human model











# EMC measurements –EMC scanner

- Near-field probe moved in X and Y directions
- Heat camera



40.0dBuN 30.0dBu 20.0dB

start





# EMC measurements - The effect of a conductive wall/enclosure



Reflection and transmission test Shielding effectiveness calculation











# EMC measurements Not currently used

Immunity measurements in GTEM cell EM Eye Electromagnetic field and RF signal meter Measurements of EMC antennas in an RF <del>anechoic chamber</del> Differential and common mode interferences and ferrite components



. . .

# **EMC** measurements in near future and Should have

- New measurements: RF immunity
- Improve test environment: ESD
- New or replacement equipment: EMC scanner, AC LISN device, Near-field probes

A more demanding PCB design for students – high frequencies CE marking



### Power consumption – Current measurement

Shunt resistor Instrumentation amplifier Current sense amplifier

Good enough Improvement: Add filtering







### Power consumption – Current measurement

12V, USB or battery powered energy-efficient

- Multisim used to simulate some circuits: No simulation support for microcontroller
- Falstad circuit simulator





#### **Power optimization**

Sleep modes – Sensor nodes Replace components – LCD vs e-ink





### **Sustainability**



Environmental sustainability – Small measures Don't throw components to the bin after a laboratory exercise Use unleaded solder instead of leaded solder – Flux? Use soldering fume extractor – Poor funnel nozzles?

Economic sustainability – Good enough



PUT USED

**RESISTORS HERE** 



#### **Teaching trends**

Integration: PCB assembly, mechanical design, EMC

Course evaluation: Peer and group evaluation in PCB projects Artificial Intelligence (AI) in embedded programming Balanced student groups





### Thank you

