

Applications and Analysis of Commercial Millimeter-wave Radar Sensors in a Student Project at Metropolia UAS

Heikki Valmu Metropolia University of Applied Sciences, Helsinki, Finland

The Sensors Course Implementation

- 15 ECTS 4 sensor projects – 8 weeks
- Strain gauges temp sensors – light sensors – mm-Wave radar sensors
- 24 students in 8 subgroups of 3 in 2024
- 6th semester Bachelor studens in DP of Electronics

The mm-Wave Radar Sensor Project

- Commercial low-cost FMCW radars at 24 and 61 GHz
- 4 week project to test the radar sensors and create an application
- Tools or Toys?

Learning Objectives / Topics / Activities

- Prior knowledge: radio and uWave engineering, Arduino C, fundamentals of analog and digital electronics, ...
- This applied to mm-waves, radar technology, microstrip antennas, antenna arrays, ...
- To see whether the radars are able to keep their promises
- Two exams, multiple HW, project tasks to test a 24 GHz and a 61 GHz radar and create an application using either of those.

24 GHz radars to detect human presence

60 GHz radars to measure breath and heart rate

MR24HPC1	MR60BHA1	MR24BSD1			
human presence and absence <=3m	Human presence (2.5m) measured 2.42m	human presence			
motion perception <= 5m	motion perception	the motion			
static perception <=4m	respiratory and heart rate(maximum 1.5m)	respiratory <=1.5m			
	Sleep status combined with long- term sleep posture and body movement collection (2.5m)	Sleep quality monitoring by detecting body moving and stationary along with human breathing rate <=2.75m, Relection time <=60s			
Antenna beam width: 90° horizontal / 60° vertical sector beam	Radar beam: 80° horizontally and 80° tilted.	Antenna beamwidth: Horizontal 40°/vertical 40° sector beam			

The Seeed Studio 24 GHz Radar

mm-WAVES

<i>ji</i>		_							WAV	ELE	NGT	H (m	m)						
ISM Band Freque	ncy Limits	10	30	20	1	5	10.0	8.0	6.0	0 5.0	0	4.0	3.0	2	.0 1	.5	1	.0	0.8
6.765 MHz	6.795 MHz	- 10																~	
13.553 MHz	13.567 MHz	2	20 -												$ \wedge$			$ \land $	_
26.957 MHz	27.283 MHz	1	0														\square	Λ	~
40.66 MHz	40.7 MHz	3/km)	4 - 2 -											\sim	ŁΛ			$\left \right $	
433.05 MHz	434.79 MHz	N (df	1							H	11			\wedge	+/1			\vdash	-
902 MHz	928 MHz	0 ATIO	.4 –						Λ	/			H,	N.				1	-
2.4 GHz	2.5 GHz		.2 –					_		/			$ \rangle$		H ₂ C)		H ₂ O	_
5.725 GHz	5.875 GHz	- IF 0.0	04 -	A							e -			1					_
24 GHz	24.25 GHz	0.0)2				$ \rightarrow $			0	2			02					-
61 GHz	61.5 GHz	0.00	04	В		н ₂ 0													
122 GHz	123 GHz	0.00	02 -																-
244 GHz	246 GHz	0.00	1 10	15	2	0 25	5 30	40	50) 60	0 7	0 80 9	90 1 0 0	1	50 2	200 2	50 30	00	400
									FRE	QUE	NC	(GF	Iz)						

FMCW RADAR

FMCW RADAR

$$egin{aligned} f(R) &= rac{\Delta(f_1) + \Delta(f_2)}{2} \ f(D) &= rac{|\Delta(f_1) - \Delta(f_2)|}{2} \end{aligned}$$

https://www.radartutorial.eu/02.basics/Frequency%20Modulated%20Continuous%20 Wave%20Radar.en.html

The Radio (Infineon BGT24LTR11)

Parameter	Symbol		Unit		
		Min.	Тур.	Max.	
RX frequency range	f _{RX}	24.0		24.25	GHz
RX input impedance	Z _{RXIN}		50	26	Ω
Voltage conversion gain	G _C	15.5	20	26.5	dB
SSB noise figure	NF _{SSB}		10	18	dB
Input compression point	IP _{1dB}	-28		0	dBm
Quadrat. phase imbalance	8 _P	0		24	deg
Quadrat. amplitude imbalance	EA	<mark>-1</mark>		1	dB
IF output impedance	ZIE		3	1	kΩ

Parameter	Symbol		Unit			
		Min.	Тур.	Max.		
VCO frequency range	fvco	24.050		24.250	GHz	
VCO phase noise	P _N	d.		-55 -80	dBc/ Hz	
VCO AM noise	PAM	6	^k	-135	dBc/ Hz	
Tuning voltage to cover VCO frequency range	VTUNE	0.7		2.5	V	
VCO tuning sensitivity within VCO frequency range			720	2000	MHz/V	
Second Harmonic Suppression		25			dBc	
Non-harmonic suppression		62	- 2		dBc	
Non-harmonic suppression		45	20		dBc	
TX output power	P _{TX}	2	6	10	dBm	
TX load impedance	Z _{TXOUT}		50		Ω	

Kalvosarjan tekijän nimi

The Student Applications

Some Applications tested by the Students

53 59 85 02 00 01 3F 73 54 43 Sensor monitored the current heart rate value is: 63

53 59 81 02 00 01 0F 3F 54 43 Sensor monitored the current breath rate value is: 15

- Design a rectangular microstrip antenna for a frequency of 5.8 GHz. The substrate is 1.55 mm thick FR4. Match the antenna to 50 Ω using a quarter wavelength transformer. As a result give a picture of the whole thing with its physical dimensions.
- Estimate the radiation pattern of the 24 GHz mmWave Sleep Breathing Monitoring Module (the one having the 16-element antenna arrays as both antennas). The distance between the antenna elements is 5 mm horizontally and 6 mm vertically. Give the radiation patterns in both planes (E-plane and Hplane) as well as the 3dB beamwidth in both planes and estimate the directivity of the antenna. Estimate as well the antenna gain if the internal antenna losses are 2.8 dB.

The frequency of a FMCW radar is 24 GHz and the modulation waveform is sawtooth as shown in the picture below. You measure the distance of the target as 2m. The bandwidth of the sweep is 200 MHz.

a) How much in that case is Δt ?

b) And Δf (assuming that the chirp time is 1ms and the target is not moving)?

c) What's the error in the distance measurement due to the doppler effect if the target is moving away from the radar with a velocity of 2 m/s?

 The waveform of the radar of the problem above is now triangular (as in the picture below). The chirp time and the BW remain the same. You measure Δf1 as 4.500 MHz and Δf2 as 4.520 MHz. Calculate the distance of the target and its axial speed (and tell whether the target is moving towards you or away from you).

Analyze a 2.3 GHz radio link from a base station to a 5G mobile phone in the distance of 500 m from the base station. Calculate the received power if the base station antenna gain is 20 dB and the receiving antenna has a gain of 3 dB. The transmitted power is 24 dBm. Calculate as well the power density where the mobile phone is located.

Continue the analysis of the same radio link if the frequency of 60 GHz is used. The 5G mobile phone is still in the same distance and its antenna gain is still 3 dB. You need to receive the same power level as before, and therefore you have to increase either the antenna gain or the transmitted power, or both. How much the EIRP (transmitted power multiplied by the transmitter gain) has to be increased. The received power stays the same, but what happens to the power density by the receiver? Any comments?

Conclusions and future actions

- 4 weeks two short
- The radar specs mostly as promised
- The level of radar documentation too poor
- Two successful implementations (2023 and 2024) => probably something else in 2025
- The recurring question from students:
 Aren't these frequencies harmful?

THANK YOU!

- www.metropolia.fi/en/
- www.facebook.com/MetropoliaAMK
- name.surname@metropolia.fi

