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Abstract—In the context of training competent future 

engineers, we develop platforms that shall help students to build 

practical competencies by working on challenging tasks for 

creative and highly motivating applications. Several of these 

platforms use systems that autonomously learn to master 

control tasks. Such systems are typically based on deep 

reinforcement learning (DRL), and related algorithms are 

frequently demonstrated by agents that learn to play games. In 

the following, we report on first results related to a platform 

where AI agents learn to manoeuvre balls through virtual and 

physical mazes while avoiding dropping into holes. 
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I. INTRODUCTION 

Our main objective in the education of engineers is to 
develop students into valuable future employees for industry 
and other organizations. This means, they should build and 
strengthen skills and competencies required for their future 
profession. It is not contradictory to do so by working on 
creative or even playful tasks that, strictly speaking, would not 
result in meaningful products. A focus on educational aspects, 
however, is a chance to offer students challenging tasks that 
are highly motivating. And experience shows that high 
intrinsic motivation and creative working environments 
typically result in a very good learning effect. 

In this context, we create systems—or “platforms”—that 
serve students as working environments for their bachelor’s 
and master’s theses. The platforms should combine 
technologies and methods from different fields such as deep 
learning, image processing, software development, 
electronics, and mechatronics, to name a few. This enables us 
to offer tasks from various technological fields, and it requires 
students to take interdisciplinary aspects into account. 
Moreover, we build up and use the platforms in consecutive 
theses. As an additional advantage, students typically do not 
have an isolated task starting from zero but need to analyze 
and understand the state (e.g., software code) of the provided 
system and build their own work upon it. 

The system subject to this paper is motivated by a famous 
traditional maze game. It consists of a wooden box which 
contains a board with start location, walls, holes, and finish. 
Players use two knobs to tilt the board in x and y direction, 
respectively, and must navigate a ball along a given path from 
start to finish. A player loses when the ball drops into a hole 
and wins when the ball reaches the finish. 

II. SYSTEM OVERVIEW 

Fig. 1 gives an overview of the system. The main purpose 
of use is to train and demonstrate artificial intelligence (AI)—
more specifically, deep reinforcement learning agents—that 
manoeuvre balls through labyrinths. Hence, the central 
component is an AI agent running on a computer such as a 
laptop. 

A. Software simulation (virtual environment) 

Obviously, the AI agent needs a labyrinth game to interact 
with. An efficient way to learn how to master the game is by 
training in a so-called virtual environment, i.e., a software 
simulation of the original game. This allows to automatically 
play many rounds without physical restrictions such as real-
time or the need to manually place the ball at its starting 
position. 

With respect to the interaction, the AI agent gets the 
environment’s state (e.g., the board’s tilt and the location of 
the ball) as input. From the state it derives which action (i.e., 
tilting of the board) seems most promising and passes the 
action to apply to the environment. Not depicted in Fig. 1, the 
virtual environment gives the AI agent a numerical value, or 
“reward”, as feedback on how good or bad the respective 
action was. For instance, the agent gets a large positive reward 
when the ball reaches the finish, while it gets negative 
feedback when the ball drops into a hole. 

B. Physical device (physical environment) 

In addition to the virtual software environment, there 
exists a physical environment providing comparable 
functionality. For automated game play we have motorized 
the knobs of the original wooden game by standard servo 
motors, timing belts, and 3D printed parts. Since laptops 
typically do not provide GPIO ports or similar interfaces, we 
integrated an Arduino Uno R3 and a PCA9685 servo driver 
board to control the servo motors. 

The system state is determined by a camera and 
subsequent image processing. For this purpose, we have 
mounted an industrial camera Alvium 1800 U-500c by Allied 

Vision Technologies. The camera acquires 25921944 pixel 
at up to 68 frames per second. An industrial camera gives us 
the flexibility to mount lenses of different focal lengths and, 
hence, adapt the distance between camera and labyrinth. Our 
current system uses a 4.5 mm fixed focus lens LM5NCL by 
Kowa, mounted 40 cm above the game’s board. 

As depicted in Fig. 1, the AI agent need not distinguish 
between the virtual and the physical environment. In both We highly appreciate Allied Vision Technologies GmbH for providing the 

camera and Kowa Optimed Deutschland GmbH for providing the lens of 

the physical demonstrator. 



cases it gets the same representation of the system state as 
input. From the agent’s perspective, it does not make a 
difference whether these values origin from the software 
simulation or were derived by image processing of frames 
from a camera observing the physical device. Just the same, it 
is irrelevant for the agent whether the actions are performed 
by the virtual environment or the physical device. 

III. TRAINING PROCEDURE AND LABYRINTHS 

A. Solving the virtual and physical environments 

The existence of a virtual as well as a physical 
environment enables us to follow a step-by-step approach: 

1. Train AI agents in virtual environment 

2. Transfer agents to physical environment 

3. Refine pre-trained agents in physical environment 

At first, we use the virtual software environment, only. 
Once we have developed AI agents that master the virtual 
game, we can transfer the models to the physical device. Due 
to a reality gap between the physical game and its software 
simulation, it is likely that the models will not perform as well 
as they do in the virtual environment. Hence, as a third step 
we intend to transfer virtually pre-trained agents and continue 
training on the physical device to adapt them to the deviations 
with respect to the simulation. This shall significantly reduce 
the number of physical training episodes required to achieve 
comparable performance. 

B. Labyrinth layouts 

As stated, the system gives us flexibility with respect to 
the labyrinth layouts. This enables us to adapt the complexity 
of the control task. However, a prerequisite for successfully 

transferring AI agents from the virtual to the physical 
environment is that both environments use the same labyrinth 
layouts. 

Fig. 2 shows the currently used layouts, being identical in 
the virtual and in the physical environment—from left to right: 

1. Board without holes 

2. Custom labyrinth with two holes 

3. Two labyrinths provided with the original game 

The first board differs in the sense, that there is no path to 
follow and there are no holes a ball could drop into. The AI 
agent shall learn to bring the ball to the center location and 
keep it there. Apart from providing a presumably simple task, 
having no hole is an advantage when playing on the physical 
device. As the ball cannot drop into a hole the device can keep 
on training or playing for a long time without the need to 
manually place the ball on the board. 

Additionally, we use three labyrinth layouts: a custom 
layout with only two holes and two layouts provided with the 
original game containing eight and 21 holes, respectively. 
While the custom layout defines a task of comparatively low 
complexity, the original layouts are obviously more 
challenging to solve. 

IV. VIRTUAL ENVIRONMENT 

We have addressed the development of a virtual 
environment and virtually trained AI agents in the master’s 
thesis of Sandra Lassahn [1]. The environment is implemented 
in Python and written to be compatible to the OpenAI 
gymnasium library. Naturally, the simulation uses the same 
physical dimensions and labyrinth layouts as the physical 

 

 

Fig. 1: System overview 

 

 

Fig. 2: Labyrinth layouts with zero, two, eight, and 21 holes (left to right) 



device. Naturally, we have modeled the physical behavior of 
the ball (e.g., friction and collisions with walls). Moreover, the 
environment offers a 3D visualization of the game. This is 
very helpful to demonstrate the performance of trained agents 
and to observe the behavior of agents in specific situations that 
they cannot master, yet. 

V. DEEP Q-NETWORK AGENTS 

A. General approach 

While reinforcement learning is just a general framework 
to automatically master control tasks, there are numerous 
methods how to implement a solution. A comparatively 
simple and intuitive approach is Q learning, which trains a 
table containing the “quality” of all allowed actions given a 
concrete system state. Somewhat simplified, Q values are the 
expected future reward when taking the specific action in the 
given state and continue taking the best actions according to 
the Q table from thereon. 

However, the approach is impractical when the number of 
actions and/or states grows too large, resulting in far too big 
tables to train or keep in memory. The issue can be resolved 
by not storing all values of the Q table but approximating them 
by a fully connected artificial neural network, instead. The 
network takes the system state as input and is trained by deep 
learning to output estimated Q values of all allowed actions––
hence the term deep Q-network (DQN). 

While alternative approaches exist, we choose DQN for 
two reasons. First, we want to find out if this simple approach 
is sufficient to solve the task. Furthermore, we have already 
successfully applied DQN in prior projects. 

B. Observation space and action space 

As written, deep Q-networks take the system state as input 
and output an estimation of the quality for each action the 
system could take. State values are taken from the so-called 
observation space. We choose to feed the current tilt angles in 
x and y directions, the current location of the ball, and the 
ball’s location during the previous time step into the network. 
Providing the current as well as the last location shall enable 
the agent to derive the direction and speed of the ball. 

The actions, taken from the so-called action space, control 
the tilt of the labyrinth in x and y direction. Initially, we 
considered tilt angles to have values from a continuous 
numerical range. Moreover, actions could either represent the 
board’s absolute inclination in degrees with respect to a level 
alignment, or they could represent the relative change, i.e., the 
tilting to apply. Finally, an action could impact both 

directions, x and y, simultaneously, or have an impact only on 
the horizontal or the vertical axis at a time, but not on both. 

In our experiments we found that setting five discrete tilt 
angles, namely 0°, ±0.5°, and ±1°, are sufficient to navigate 
balls through the labyrinths. Furthermore, we do not adapt x 
and y at the same time. Instead, each action represents an angle 
in x or an angle in y, only. 

C. Reward system 

During training a DQN agent receives a reward for each 
action taken and “learns” by iteratively adapting its 
parameters to maximize the overall reward. Since this it is the 
only feedback the agent receives, the applied reward system is 
one of several very critical aspects for successful training. 

We conducted experiments with different reward systems, 
where the approach illustrated in Fig. 3 resulted in stable 
training processes. As a first step we divided the labyrinths 
into a sequence of rectangular zones leading along the path 
from start to finish. Hence, at any point in time it is well 
defined in which zone the ball is currently located and into 
which zone it should move to get closer to the finish. 
Secondly, the agent needs feedback motivating it to move the 
ball into the right direction. For this we have defined target 
coordinates located near the entry of the next zone to reach. 
An agent receives a positive reward when the ball gets closer 
to the next target location. Finally, the agent is punished by a 
large negative reward when the ball drops into a hole. 

D. Network architectures and training 

We have trained a dedicated AI agent for each labyrinth 
layout depicted in Fig. 2. All agents use fully connected neural 
networks to approximate the actions’ Q values. Naturally, all 
network architectures have the same input and output layers 
as these reflect the observed system state and the Q values. 
The input layers consist of six neurons receiving the current 
system state represented by the board’s tilt angles 𝛼𝑥 and  𝛼𝑦 

in x and y, the ball’s current location (𝑥𝑡 , 𝑦𝑡), and the ball’s 
location  (𝑥𝑡−1, 𝑦𝑡−1) at the previous time step. The output 
layers contain ten neurons representing the Q values of the 
five discrete tilt angles in x and five discrete tilt angles in y as 
described above. 

The number and sizes of the hidden layers depend on the 
labyrinth layout. For the layout without holes, we have used 
two hidden layers with 512 and 128 neurons, respectively. We 
expected the layout with two holes to be slightly more 
challenging—and thus require more neurons—because the 
ball must follow a defined path. However, two hidden layers 
with 128 neurons, each, were fully sufficient. Based on 
observations of the 3D visualization we concluded that the 

 

 

Fig. 3: Reward system with zones (rectangles) and target coordinates (crosses) 



task is in fact easier to learn.  Instead of balancing the ball in 
x and in y to keep it at the board’s center, the ball can keep on 
rolling “downward” in y, while the agent uses tilting in x to let 
the ball roll along the right wall and the left wall. 

For the layout with eight holes, we have used three hidden 
layers with 2048, 1024, and 256 neurons. Naturally, it is far 
more complex to navigate a ball through the layout with 21 
holes. As we did not want to significantly increase the network 
any further, we trained two agents with one agent navigating 
the ball through the first half, and the other one taking over for 
the second half of the path from start to finish. Both agents 
have three hidden layers with 2048, 1024, and 256 neurons. 

As final remarks, all networks use leaky ReLU activations, 
batch normalization, and Adam as optimizer. The number of 
episodes range from about 1,000 for the simple layouts to 
about 3,500 for the layouts with eight and 21 holes. Moreover, 
we applied an epsilon greedy approach to balance exploitation 
and exploration during training. 

VI. RESULTS 

So far, we have finalized a first thesis [1] on our 
experimental platform for deep reinforcement learning using 
virtual and physical mazes. We have developed a fully 
functional virtual environment with optional 3D visualization, 
being a simulation of the original physical game, and 
successfully trained DQN agents to reliably navigate balls 
through different labyrinth layouts. Moreover, there exists an 
application with graphical user interface which simplifies the 
parametrization and training and can be used to demonstrate 
trained agents playing the game. 

With respect to the physical environment, we have 
motorized the original game and implemented software to 
control the device. The low-level control of the servo motors 

is handled by an Arduino board. Applications running on a 
connected computer can operate the physical device by using 
our Python classes, which manage the connection and 
communication with the Arduino board and provide methods 
to set the servo motors. Finally, we conducted a proof of 
concept with a simple webcam and basic image processing. 

VII. ONGOING WORK AND OUTLOOK 

At the time of writing there is an ongoing thesis [2] which 
concentrates mainly on making the physical environment fully 
operational. We have integrated the industrial camera and now 
have full control of, for instance, the acquisition trigger and 
the exposure time. Most noticeably, we develop image 
processing methods to extract the labyrinth board and detect 
and locate the ball, holes, start, finish, and walls. These are 
key to providing AI agents with the current state of the 
physical environment (see Fig. 1). Finally, we intend to 
transfer virtually trained agents to the physical device, 
although this will only be a first attempt and needs to be 
addressed in detail in future work. 

Further future work, once the platform is fully functional, 
might include experiments with reward systems, alternative 
approaches for deep reinforcement learning, custom layouts, 
and the development of an agent which is able to play 
labyrinths it has not seen during training, to name a few.  
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