Virtual Environment and Automated Physical
Rolling Maze as Experimental Platform
for Deep Reinforcement Learning

Marc Hensel
Information and Electrical Engineering
Hamburg University of Applied Sciences
Hamburg, Germany
marc.hensel@haw-hamburg.de

Abstract—In the context of training competent future
engineers, we develop platforms that shall help students to build
practical competencies by working on challenging tasks for
creative and highly motivating applications. Several of these
platforms use systems that autonomously learn to master
control tasks. Such systems are typically based on deep
reinforcement learning (DRL), and related algorithms are
frequently demonstrated by agents that learn to play games. In
the following, we report on first results related to a platform
where Al agents learn to manoeuvre balls through virtual and
physical mazes while avoiding dropping into holes.

Keywords—artificial intelligence, deep reinforcement

learning, self-learning systems, image processing

I. INTRODUCTION

Our main objective in the education of engineers is to
develop students into valuable future employees for industry
and other organizations. This means, they should build and
strengthen skills and competencies required for their future
profession. It is not contradictory to do so by working on
creative or even playful tasks that, strictly speaking, would not
result in meaningful products. A focus on educational aspects,
however, is a chance to offer students challenging tasks that
are highly motivating. And experience shows that high
intrinsic motivation and creative working environments
typically result in a very good learning effect.

In this context, we create systems—or “platforms”—that
serve students as working environments for their bachelor’s
and master’s theses. The platforms should combine
technologies and methods from different fields such as deep
learning, image processing, software development,
electronics, and mechatronics, to name a few. This enables us
to offer tasks from various technological fields, and it requires
students to take interdisciplinary aspects into account.
Moreover, we build up and use the platforms in consecutive
theses. As an additional advantage, students typically do not
have an isolated task starting from zero but need to analyze
and understand the state (e.g., software code) of the provided
system and build their own work upon it.

The system subject to this paper is motivated by a famous
traditional maze game. It consists of a wooden box which
contains a board with start location, walls, holes, and finish.
Players use two knobs to tilt the board in x and y direction,
respectively, and must navigate a ball along a given path from
start to finish. A player loses when the ball drops into a hole
and wins when the ball reaches the finish.

We highly appreciate Allied Vision Technologies GmbH for providing the
camera and Kowa Optimed Deutschland GmbH for providing the lens of
the physical demonstrator.

Sandra Verena Lassahn
Information and Electrical Engineering
Hamburg University of Applied Sciences
Hamburg, Germany

Il. SYSTEM OVERVIEW

Fig. 1 gives an overview of the system. The main purpose
of use is to train and demonstrate artificial intelligence (Al)—
more specifically, deep reinforcement learning agents—that
manoeuvre balls through labyrinths. Hence, the central
component is an Al agent running on a computer such as a
laptop.

A. Software simulation (virtual environment)

Obviously, the Al agent needs a labyrinth game to interact
with. An efficient way to learn how to master the game is by
training in a so-called virtual environment, i.e., a software
simulation of the original game. This allows to automatically
play many rounds without physical restrictions such as real-
time or the need to manually place the ball at its starting
position.

With respect to the interaction, the Al agent gets the
environment’s state (€.g., the board’s tilt and the location of
the ball) as input. From the state it derives which action (i.e.,
tilting of the board) seems most promising and passes the
action to apply to the environment. Not depicted in Fig. 1, the
virtual environment gives the Al agent a numerical value, or
“reward”, as feedback on how good or bad the respective
action was. For instance, the agent gets a large positive reward
when the ball reaches the finish, while it gets negative
feedback when the ball drops into a hole.

B. Physical device (physical environment)

In addition to the virtual software environment, there
exists a physical environment providing comparable
functionality. For automated game play we have motorized
the knobs of the original wooden game by standard servo
motors, timing belts, and 3D printed parts. Since laptops
typically do not provide GPIO ports or similar interfaces, we
integrated an Arduino Uno R3 and a PCA9685 servo driver
board to control the servo motors.

The system state is determined by a camera and
subsequent image processing. For this purpose, we have
mounted an industrial camera Alvium 1800 U-500c by Allied
Vision Technologies. The camera acquires 2592x1944 pixel
at up to 68 frames per second. An industrial camera gives us
the flexibility to mount lenses of different focal lengths and,
hence, adapt the distance between camera and labyrinth. Our
current system uses a 4.5 mm fixed focus lens LM5NCL by
Kowa, mounted 40 cm above the game’s board.

As depicted in Fig. 1, the Al agent need not distinguish
between the virtual and the physical environment. In both

Proceedings of the International Symposium on Ambient Intelligence and Embedded Systems (AmiEs-2025), September 24 - 27, 2025, Hamburg, Germany



Physical environment

Laptop
Image
- - processing
Virtual environment
1 Al
Action

Camera

Servos

> Arduino

Fig. 1: System overview

cases it gets the same representation of the system state as
input. From the agent’s perspective, it does not make a
difference whether these values origin from the software
simulation or were derived by image processing of frames
from a camera observing the physical device. Just the same, it
is irrelevant for the agent whether the actions are performed
by the virtual environment or the physical device.

I11. TRAINING PROCEDURE AND LABYRINTHS

A. Solving the virtual and physical environments

The existence of a virtual as well as a physical
environment enables us to follow a step-by-step approach:

1. Train Al agents in virtual environment
2. Transfer agents to physical environment
3. Refine pre-trained agents in physical environment

At first, we use the virtual software environment, only.
Once we have developed Al agents that master the virtual
game, we can transfer the models to the physical device. Due
to a reality gap between the physical game and its software
simulation, it is likely that the models will not perform as well
as they do in the virtual environment. Hence, as a third step
we intend to transfer virtually pre-trained agents and continue
training on the physical device to adapt them to the deviations
with respect to the simulation. This shall significantly reduce
the number of physical training episodes required to achieve
comparable performance.

B. Labyrinth layouts

As stated, the system gives us flexibility with respect to
the labyrinth layouts. This enables us to adapt the complexity
of the control task. However, a prerequisite for successfully

transferring Al agents from the virtual to the physical
environment is that both environments use the same labyrinth
layouts.

Fig. 2 shows the currently used layouts, being identical in
the virtual and in the physical environment—from left to right:

1. Board without holes
2. Custom labyrinth with two holes
3. Two labyrinths provided with the original game

The first board differs in the sense, that there is no path to
follow and there are no holes a ball could drop into. The Al
agent shall learn to bring the ball to the center location and
keep it there. Apart from providing a presumably simple task,
having no hole is an advantage when playing on the physical
device. As the ball cannot drop into a hole the device can keep
on training or playing for a long time without the need to
manually place the ball on the board.

Additionally, we use three labyrinth layouts: a custom
layout with only two holes and two layouts provided with the
original game containing eight and 21 holes, respectively.
While the custom layout defines a task of comparatively low
complexity, the original layouts are obviously more
challenging to solve.

IV. VIRTUAL ENVIRONMENT

We have addressed the development of a virtual
environment and virtually trained Al agents in the master’s
thesis of Sandra Lassahn [1]. The environment is implemented
in Python and written to be compatible to the OpenAl
gymnasium library. Naturally, the simulation uses the same
physical dimensions and labyrinth layouts as the physical

el

Fig. 2: Labyrinth layouts with zero, two, eight, and 21 holes (left to right)



-------- o

'@

T

Fig. 3: Reward system with zones (rectangles) and target coordinates (crosses)

device. Naturally, we have modeled the physical behavior of
the ball (e.g., friction and collisions with walls). Moreover, the
environment offers a 3D visualization of the game. This is
very helpful to demonstrate the performance of trained agents
and to observe the behavior of agents in specific situations that
they cannot master, yet.

V. DEEP Q-NETWORK AGENTS

A. General approach

While reinforcement learning is just a general framework
to automatically master control tasks, there are numerous
methods how to implement a solution. A comparatively
simple and intuitive approach is Q learning, which trains a
table containing the “quality” of all allowed actions given a
concrete system state. Somewhat simplified, Q values are the
expected future reward when taking the specific action in the
given state and continue taking the best actions according to
the Q table from thereon.

However, the approach is impractical when the number of
actions and/or states grows too large, resulting in far too big
tables to train or keep in memory. The issue can be resolved
by not storing all values of the Q table but approximating them
by a fully connected artificial neural network, instead. The
network takes the system state as input and is trained by deep
learning to output estimated Q values of all allowed actions—
hence the term deep Q-network (DQN).

While alternative approaches exist, we choose DQN for
two reasons. First, we want to find out if this simple approach
is sufficient to solve the task. Furthermore, we have already
successfully applied DQN in prior projects.

B. Observation space and action space

As written, deep Q-networks take the system state as input
and output an estimation of the quality for each action the
system could take. State values are taken from the so-called
observation space. We choose to feed the current tilt angles in
x and y directions, the current location of the ball, and the
ball’s location during the previous time step into the network.
Providing the current as well as the last location shall enable
the agent to derive the direction and speed of the ball.

The actions, taken from the so-called action space, control
the tilt of the labyrinth in x and y direction. Initially, we
considered tilt angles to have values from a continuous
numerical range. Moreover, actions could either represent the
board’s absolute inclination in degrees with respect to a level
alignment, or they could represent the relative change, i.e., the
tilting to apply. Finally, an action could impact both

directions, x and y, simultaneously, or have an impact only on
the horizontal or the vertical axis at a time, but not on both.

In our experiments we found that setting five discrete tilt
angles, namely 0°, £0.5°, and *1°, are sufficient to navigate
balls through the labyrinths. Furthermore, we do not adapt x
and y at the same time. Instead, each action represents an angle
inx oranangle iny, only.

C. Reward system

During training a DQN agent receives a reward for each
action taken and “learns” by iteratively adapting its
parameters to maximize the overall reward. Since this it is the
only feedback the agent receives, the applied reward system is
one of several very critical aspects for successful training.

We conducted experiments with different reward systems,
where the approach illustrated in Fig. 3 resulted in stable
training processes. As a first step we divided the labyrinths
into a sequence of rectangular zones leading along the path
from start to finish. Hence, at any point in time it is well
defined in which zone the ball is currently located and into
which zone it should move to get closer to the finish.
Secondly, the agent needs feedback motivating it to move the
ball into the right direction. For this we have defined target
coordinates located near the entry of the next zone to reach.
An agent receives a positive reward when the ball gets closer
to the next target location. Finally, the agent is punished by a
large negative reward when the ball drops into a hole.

D. Network architectures and training

We have trained a dedicated Al agent for each labyrinth
layout depicted in Fig. 2. All agents use fully connected neural
networks to approximate the actions’ Q values. Naturally, all
network architectures have the same input and output layers
as these reflect the observed system state and the Q values.
The input layers consist of six neurons receiving the current
system state represented by the board’s tilt angles a, and a,,
in x and y, the ball’s current location (x;,y;), and the ball’s
location (x._q,y:-1) at the previous time step. The output
layers contain ten neurons representing the Q values of the
five discrete tilt angles in x and five discrete tilt angles in y as
described above.

The number and sizes of the hidden layers depend on the
labyrinth layout. For the layout without holes, we have used
two hidden layers with 512 and 128 neurons, respectively. We
expected the layout with two holes to be slightly more
challenging—and thus require more neurons—because the
ball must follow a defined path. However, two hidden layers
with 128 neurons, each, were fully sufficient. Based on
observations of the 3D visualization we concluded that the



task is in fact easier to learn. Instead of balancing the ball in
x and in y to keep it at the board’s center, the ball can keep on
rolling “downward” in y, while the agent uses tilting in x to let
the ball roll along the right wall and the left wall.

For the layout with eight holes, we have used three hidden
layers with 2048, 1024, and 256 neurons. Naturally, it is far
more complex to navigate a ball through the layout with 21
holes. As we did not want to significantly increase the network
any further, we trained two agents with one agent navigating
the ball through the first half, and the other one taking over for
the second half of the path from start to finish. Both agents
have three hidden layers with 2048, 1024, and 256 neurons.

As final remarks, all networks use leaky ReL U activations,
batch normalization, and Adam as optimizer. The number of
episodes range from about 1,000 for the simple layouts to
about 3,500 for the layouts with eight and 21 holes. Moreover,
we applied an epsilon greedy approach to balance exploitation
and exploration during training.

VI. RESULTS

So far, we have finalized a first thesis [1] on our
experimental platform for deep reinforcement learning using
virtual and physical mazes. We have developed a fully
functional virtual environment with optional 3D visualization,
being a simulation of the original physical game, and
successfully trained DQN agents to reliably navigate balls
through different labyrinth layouts. Moreover, there exists an
application with graphical user interface which simplifies the
parametrization and training and can be used to demonstrate
trained agents playing the game.

With respect to the physical environment, we have
motorized the original game and implemented software to
control the device. The low-level control of the servo motors

is handled by an Arduino board. Applications running on a
connected computer can operate the physical device by using
our Python classes, which manage the connection and
communication with the Arduino board and provide methods
to set the servo motors. Finally, we conducted a proof of
concept with a simple webcam and basic image processing.

VIl. ONGOING WORK AND OUTLOOK

At the time of writing there is an ongoing thesis [2] which
concentrates mainly on making the physical environment fully
operational. We have integrated the industrial camera and now
have full control of, for instance, the acquisition trigger and
the exposure time. Most noticeably, we develop image
processing methods to extract the labyrinth board and detect
and locate the ball, holes, start, finish, and walls. These are
key to providing Al agents with the current state of the
physical environment (see Fig. 1). Finally, we intend to
transfer virtually trained agents to the physical device,
although this will only be a first attempt and needs to be
addressed in detail in future work.

Further future work, once the platform is fully functional,
might include experiments with reward systems, alternative
approaches for deep reinforcement learning, custom layouts,
and the development of an agent which is able to play
labyrinths it has not seen during training, to name a few.

REFERENCES

[1] S.V. Lassahn, “3D-Simulation und prototypischer Aufbau eines durch
Reinforcement Learning gesteuerten Labyrinths,” Master’s thesis,
HAW Hamburg, 2024.

[2] S. Rastagar, “Deep Reinforcement Learning und Bildverarbeitung zur

generalisierbaren Steuerung physischer Labyrinthe,” Master’s thesis,
HAW Hamburg, to be published 2025.



