

Passkeys – a sophisticated alternative to passwords

Prof. Dr.-Ing. Ulrich Jetzek
Kiel University of Applied Sciences, Germany
Institute of Communications Technology and Embedded Systems

International Symposium on
Ambient Intelligence and Embedded Systems
September 24th – 27th, 2025

Hamburg University of Applied Sciences Hamburg, Germany

Overview

- 1. Introduction
- 2. Passwords how do they work?
- 3. Disadvantages of passwords
- 4. FIDO Fast IDentity Online a short overview
- 5. Passkeys how do the work?
- 6. A simple passkey example
- 7. Passkey Benefits
- 8. Conclusion

1. Introduction

- > Passwords are common in many applications, but
 - Phishing or other attacks may lead to ,stolen' passwords
 - Accounts can be attacked quite easily
- Problem for the individual as well as for institutions, companies, organizations ...
- Do alternatives for passwords exist?
 - Multi-factor-authentication
 - Passkeys
- > This talk shall give insight into the functionality and advantages of passkeys ...
- Be curious ...

2. Passwords – How do they work

User-Device (Smartphone, laptop, PC):

Password: De1y#G)3?§

Application-Server (Banking Server, University-Server, etc.):

> Password: De1y#G)3?§

- Out of crypto-perspective:
- Usage of passwords corresponds to:

symmetric crypto procedure

- Sender and receiver use the same secret (private) key for encryption and decryption
- Storage and transfer of passwords is – of course – done encrypted

3. Passwords – Major Problems

User-Device (Smartphone, laptop, PC):

Password: De1y#H)3?§ Login not o.k.

Application-Server (Banking Server, University-Server, etc.):

> Password: De1y#G)3?§

Password entered by user is compared with the one stored on the application server

- > If either
 - Password ,phished' by third party OR
 - Password leak on application server

password may be used by others (,Oscar') without being noticed by application server

3. Password Usage and Disadvantages

- # of accounts / registrations for the individual continuously increasing ...
 - University
 - Banking / assurances
 - Online shopping
 - Social media
 - o ...
- > Registration in most cases: simple and a one-minute-process, but ...
 - ➤ In many cases simple passwords are used, like: summer25, 12345, ...
 - > Often same password used for *various* accounts OR:
 - Many accounts = many passwords = difficult to remember all of them
 - In many cases passwords are kept for long time

4. FIDO – a short Overview

- > FIDO Fast IDentity Online:
 - o non-commercial IT-security organisation
 - o founded in February 2013
 - FIDO kind of ,base organization' for passkeys
- ➤ Goal:
 - o development of open and non-licensed worldwide authentication methods for the internet

Source: https://de.wikipedia.org/wiki/FIDO-Allianz

5. Passkeys – How they work

Passkey – based *on asymmetric crypto-system* User creates **keypair**:

Public key – EVERYONE may encrypt a plaintext message

Private key – kept private on local device!

Decryption ONLY possible with private key

User-Device (Smartphone, laptop, PC):

Private key (e.g. fingerprint, face)

Sends random challenge

Signs random challenge

Verifies signature, if and only if correct: user being logged in

Application-Server (Banking Server, University-Server, etc.):

public key

- IDEA of asymmetric Crypto systems: Usage of a one-way- or trapdoor-function.
- With public key only it is impossible to build the inverse function needed for decryption.
- Function can ONLY be inverted with special trick.

Source: https://www.passkeycentral.org/introduction-to-passkeys/how-passkeys-work

6. Example for passkeys – showing the idea behind passkeys ...

- RSA is an asymmetric crypto-system
- > RSA is based on the *integer factorization problem*, i.e. it is impossible to factor a composite number $n = p \cdot q$ into its prime factors p, q, if p, q are sufficiently large primes
- \triangleright p and q shall each have at least 512 bits ≈ 150 decimals in length!
- ightharpoonup RSA encryption: $y = e_{k_{pub(e)}}(x) = x^e mod n$, with public key: $k_{pub(e)} = (n, e)$ and plain text x
- \triangleright Since exponentiation is done *modulo* n, 2 aspects hold:
 - \circ Exponentiation cannot be inverted (necessary for decryption) by computing the e-th root of y
 - o y appears as some large ,random' number.

6. Example for passkeys – showing the idea behind passkeys ...

- \triangleright Problem: How can we calculate plain text x out of cipher text y?
- Side aspect 1: Euler's Phi function $\Phi(n)$: gives the **number** of all elements within $\mathbb{Z}_n = \{0,1,2,...,n-1\}$ that are relatively prime to n
- \triangleright Side aspect 2: If p,q are primes and $n=p\cdot q$, then $\Phi(n)=(p-1)\cdot (q-1)$.
 - o $\Phi(n)$ EASY to calculate, if and only if we know p and q!
 - o If we only know n, we CANNOT calculate $\Phi(n)$
- Side aspect 3: if $gcd(\Phi(n), e) = 1$, i.e. if $\Phi(n)$ and e are relatively prime, there exists an element d (multiplicative inverse of d) within $\mathbb{Z}_n = \{0,1,2,...,n-1\}$, such that:

$$e \cdot d \mod \Phi(n) \equiv 1 \Leftrightarrow \mathbf{d} = \mathbf{e}^{-1} \mod \Phi(\mathbf{n})$$

6. Example for passkeys – showing the idea behind passkeys ...

 \triangleright Side aspect 4: Decyption by 2nd exponentiation *modulo n*

$$(x^e)^d mod \ n = x^{e \cdot d} mod \ n \neq x^{e \cdot d} \stackrel{mod \ n}{mod \ n} \mod n$$
, instead:
 $(x^e)^d mod \ n = x^{e \cdot d} mod \ n = x^{e \cdot d} \stackrel{mod \ \Phi(n)}{mod \ n} \mod n$

Conclusion:

- o Decryption of cipher text y not possible by calculating e-th root of y due to modulo-computation!) BUT
- o Decryption possible by 2nd exponentiation with mulitplicative inverse $d = e^{-1} \mod \Phi(n)$

6. Example: RSA - Key Generation and Proof of Correctness

- Suppose smart phone user does the following!
 - 1. Choose 2 large prime numbers p and q.
 - 2. Compute $n = p \cdot q$
 - 3. Compute Euler's Phi function $\Phi(n) = (p-1) \cdot (q-1)$
 - 4. Select the public exponent $e \in \{1,2, \dots \Phi(n) 1\}$ such that

$$gcd(\Phi(n), e) = 1$$

Publish public key (n,e) – everyone may encrypt a plain text message x

5. Compute the private key d such that

$$d \cdot e \equiv 1 \mod \Phi(n) \Leftrightarrow d = e^{-1} \mod \Phi(n)$$

6. Keep *d* secret as it is your private key!

Note: Multiplicative inverse $e^{-1} mod \Phi(n)$ may be computed using the extended Euclidean algorithm

6. Example: RSA – real parameters for p, q and n

- p = E0DFD2C2A288ACEBC705EFAB30E4447541A8C5A47A37185C5A9 CB98389CE4DE19199AA3069B404FD98C801568CB9170EB712BF $10B4955CE9C9DC8CE6855C6123_{h}$
- q = EBE0FCF21866FD9A9F0D72F7994875A8D92E67AEE4B515136B2 A778A8048B149828AEA30BD0BA34B977982A3D42168F594CA99 $F3981DDABFAB2369F229640115_{h}$
- n = CF33188211FDF6052BDBB1A37235E0ABB5978A45C71FD381A91 AD12FC76DA0544C47568AC83D855D47CA8D8A779579AB72E635 D0B0AAAC22D28341E998E90F82122A2C06090F43A37E0203C2B 72E401FD06890EC8EAD4F07E686E906F01B2468AE7B30CBD670 $255C1FEDE1A2762CF4392C0759499CC0ABECFF008728D9A11ADF_h$

6. Example: RSA – real parameters for *e* and *d*

 $e = 40B028E1E4CCF07537643101FF72444A0BE1D7682F1EDB553E3 \\ AB4F6DD8293CA1945DB12D796AE9244D60565C2EB692A89B888 \\ 1D58D278562ED60066DD8211E67315CF89857167206120405B0 \\ 8B54D10D4EC4ED4253C75FA74098FE3F7FB751FF5121353C554 \\ 391E114C85B56A9725E9BD5685D6C9C7EED8EE442366353DC39_h \\ d = C21A93EE751A8D4FBFD77285D79D6768C58EBF283743D2889A3 \\ 95F266C78F4A28E86F545960C2CE01EB8AD5246905163B28D0B \\ 8BAABB959CC03F4EC499186168AE9ED6D88058898907E61C7CC$

CC584D65D801CFE32DFC983707F87F5AA6AE4B9E77B9CE630E2

 $C0DF05841B5E4984D059A35D7270D500514891F7B77B804BED81_{h}$

6. RSA Example

User (Smartphone)

1. choose
$$p = 3$$
 and $q = 11$

2.
$$n = p \cdot q = 33$$

3.
$$\Phi(n) = (3-1)(11-1) = 20$$

4. choose
$$e = 3$$
 (public exponent)

5.
$$d \equiv e^{-1} mod \Phi(n) \equiv 7 \mod 20$$

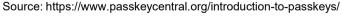
$$x = y^d \mod n$$
$$\equiv 31^7 \mod 33 \equiv 4$$

Note: prime factorization of n is not possible (only known by user!) $\rightarrow \Phi(n)$ can ONLY be calculated by user!!

1. Publish
$$K_{pub} = (n = 33, e = 3)$$
2. Send:
$$Cipher text: y = 31$$

3. Return plain text x = 4

Application Server (e.g. Banking Server)


Assume: random plain text x = 4Server calculates cipher text: $y = x^e \mod n = 4^3 \mod 33 = 31$

Server verifies that returned plain text x is correct \rightarrow Login o.k.

7. Passkey Benefits

- Passkey sign-in:
 - o more convenient than passwords, since no passwords need to be remembered and typed by user
 - always strong (as compared to possibly weak passwords!)
 - o greatly increases security, since passkeys are phishing-resistant
 - o up to 20% higher success rate than typing passwords
 - o up to 75% faster than typing passwords
 - o more successful, faster and more secure authentication!
- Credential not used across contexts (like single password for various accounts).
- Large global service providers like Amazon, CVS Health, Google, Nintendo, Intuit, and many others offer FIDO-based sign-in with passkeys.
- passkey sign-in means:
 - Better service delivery
 - o More transaction completion
 - Less account recovery events
 - Less breach risk

8. Conclusion

- > In some way history repeats:
 - Symmetric cryptography known and used much longer than asymmetric cryptography
 - Used for long time: Passwords ⇔ symmetric crypto system while
 - New system: Passkeys ⇔ asymmetric crypto system
- Passkeys
 - Are always strong
 - Do not need to be remembered (as passwords do)
 - Are phishing resistant
 - o Provide a much higher security than passwords
 - Provide fast and reliable performance
- Passkeys are an elegant and sophisticated method for secure web- and application access!

Thank you! Any questions?

