Data Analytics Tools

Dr. Ghodrat Moghadampour mg@vamk.fi Vaasa University of Applied Sciences

Outline

- Data Analytics
- Data Analytics Tools
- Main Categories
 - Programming Languages
 - Visualization Platforms
 - Big Data and Cloud Tools
 - Database Technologies

Data Analytics

- Data Analytics: the process of examining raw data to find useful information, trends, and patterns that help in decision making.
- Data analytics typically involves:
 - Collecting data: databases, sensors, logs, social media, etc.
 - Cleaning and preparing data: removing errors, formatting
 - Analyzing data: using statistics, queries, or machine learning
 - Visualizing data: charts, dashboards, reports
 - Making decisions: business strategies, process improvements, predictions

Data Analytics Tools

- Software and platforms used to collect, process, analyze, and visualize data
- Help transform raw data into insights and decisions
- Range from simple spreadsheets to advanced machine learning frameworks
- The backbone of modern analytics: reduce complexity and make data-driven decisions possible

Categories of Analytics Tools

- Programming and Scripting:
 - Python, R and SAS
- Visualization and BI:
 - Tableau, Power BI and Grafana
- Big Data and Cloud:
 - Spark, Hadoop, BigQuery and AWS Redshift
- Databases:
 - SQL, NoSQL like MongoDB and Cassandra
- Specialized and Emerging:
 - RapidMiner, KNIME and AutoML tools

Programming Languages

- Python, dominates due to ease and versatility:
 - Pandas, NumPy, Scikit-learn and Matplotlib
- R, popular in academia and statistics-heavy fields :
 - ggplot2: an R package for producing statistical, or data, graphics
 - Caret R package for predictive modeling in R, streamlining the entire machine learning workflow from data preparation to model training, evaluation, and tuning
- SAS, strong in enterprises:
 - advanced statistical modeling for enterprise use

Visualization and BI Tools

- Visualization tools make data accessible to non-technical users.
- Very useful for demonstration and decision-making:
 - Tableau:
 - Interactive dashboards, drag-and-drop, enterprise-ready
 - Power BI:
 - Microsoft ecosystem, easy Excel integration
 - Grafana:
 - Open-source, real-time monitoring and dashboards
 - Google Data Studio:
 - Cloud-native, integrates with Google products

Big Data and Cloud Tools

- Big data platforms are needed when dealing with millions or billions of records
- Cloud tools make it easier and cheaper to scale:
 - Apache Hadoop:
 - Distributed storage and processing
 - Apache Spark:
 - Fast big data processing, ML support
 - Google BigQuery:
 - Serverless, cloud data warehouse
 - AWS Redshift:
 - Scalable, fast queries in Amazon cloud
 - Azure Synapse:
 - Microsoft's analytics cloud platform

Databases

- The choice of database depends on the data type and scalability needs:
 - Relational (SQL):
 - o for structured data:
 - MySQL
 - PostgreSQL
 - Oracle DB
 - NoSQL:
 - o for flexible, large-scale, unstructured data:
 - MongoDB (document)
 - Cassandra (wide-column)
 - Neo4j (graph)

Specialized and Emerging Tools

RapidMiner:

no-code analytics platform

• KNIME:

- open-source workflow-based analytics
- Google AutoML / Azure ML:
 - Automated machine learning
- Databricks:
 - Unified platform for data, analytics, and ML

- We can use Python together with Pandas (for data manipulation) and Matplotlib and Seaborn for visualization) to analyze data.
- Prerequisites:
 - Python
 - PIP (Python 3's alias pip3): a package manager (package management system) written in Python used to install and manage software packages.
 - Pandas: a fast, powerful, flexible and easy to use open source data analysis and manipulation tool, built on top of the Python programming language.
 - Matplotlib: a comprehensive library for creating static, animated, and interactive visualizations in Python. Matplotlib makes easy things easy and hard things possible.
 - Seaborn: a Python data visualization library based on matplotlib. It provides a high-level interface for drawing attractive and informative statistical graphics.

• Prerequisites:

- NumPy: an open-source Python library for numerical computing, known for its powerful support for large, multi-dimensional arrays and matrices, and a collection of high-level mathematical functions to operate on them.
- Scikit-learn: provides an array of built-in metrics for both classification and regression problems, thereby aiding in the decision-making process regarding model optimization or model selection.
- SciPy: provides algorithms for optimization, integration, interpolation, eigenvalue problems, algebraic equations, differential equations, statistics and many other classes of problems.

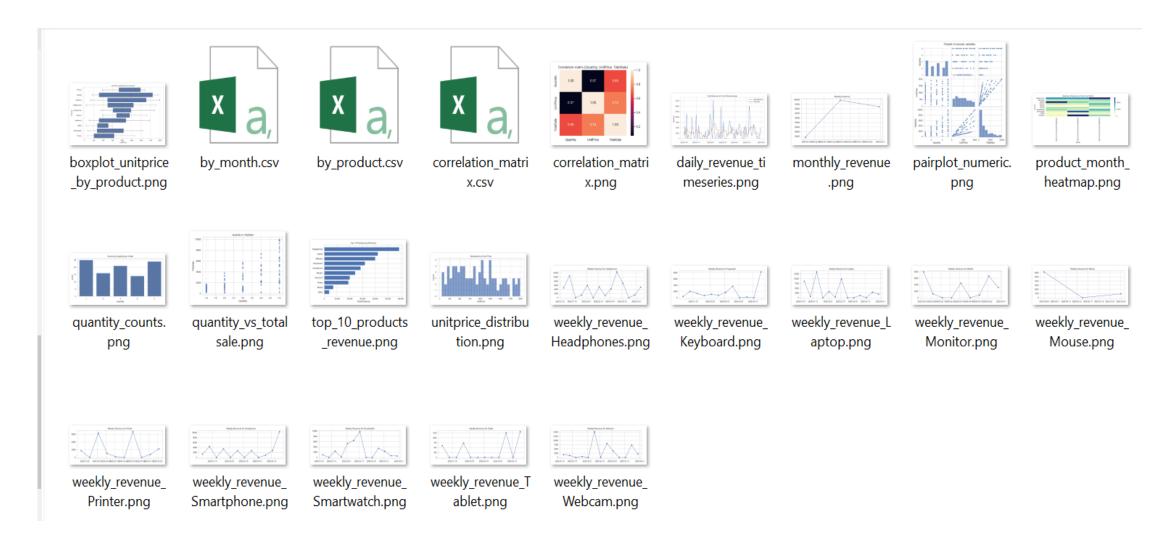
• Prerequisites:

- Plotly: an open-source graphing library and a technical computing company that provides tools for interactive data visualization and analysis.
- JupyterLab: a next-generation, open-source, web-based platform from Project Jupyter that acts as a flexible, extensible, and integrated development environment for interactive computing.
- OpenPyXL: a popular Python library used for reading from and writing to Excel 2010 (.xlsx) files, making it an essential tool for data analysis, automation, and reporting.

- Setting up the environment:
 - Download Python from <u>python.org</u>
 - python –version
 - Make sure to have pip:
 - o python -m ensurepip -upgrade
 - pip install package_name
 - Install data analytics libraries
 - pip install pandas numpy matplotlib seaborn scikit-learn scipy plotly jupyterlab openpyxl
 - o pip list
 - Start JupyterLab: great for exploration:
 - jupyter lab

• Example 1:

This example shows how pandas and pyplot of matplotlib libraries can be used to draw statistics of sales data in CSV format, which consists of the following columns: Date, Product, Sales and Income.



• Example 2:

This example shows how pandas, numpy, pyplot of matplotlib, seaborn, ticker from matplotlib and FuncFormatter libraries can be used to draw extensive statistics and diagrams from sales data in CSV format, which consists of the following columns: Date, Product, Quantity, UnitPrice and TotalSale.


```
C:\Users\mg\2025-2026\AmiES2025\code\ex2>python sales_analysis.py --input
sales.csv --outdir output_figures
----Data BASIC SUMMARY---
Rows: 100
Date range: 2025-01-01 to 2025-03-31
Products: 10
                                Product
                                                UnitPrice
                                                              TotalSale
                       Date
                        100
                                    100
                                               100.000000
                                                             100.000000
count
unique
                        NaN
                                     10
                                                       NaN
                                                                    NaN
                             Headphones
top
                        NaN
                                                      NaN
                                                                    NaN
freq
                        NaN
                                                       NaN
                                                                    NaN
        2025-02-15 01:26:24
                                    NaN
                                               910.900000
mean
                                                            2751.420000
min
        2025-01-01 00:00:00
                                    NaN
                                                 51.000000
                                                            174.000000
25%
        2025-01-24 00:00:00
                                                             965.250000
                                    NaN
                                               462.250000
50%
        2025-02-15 12:00:00
                                    NaN
                                               851.000000
                                                            1636.000000
75%
        2025-03-12 12:00:00
                                    NaN
                                              1287.250000
                                                            3873.000000
```


Thanks for your attention ©

