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Abstract—This research aimed to evaluate the use of high-level
synthesis (HLS) within the hardware-software codesign paradigm
with application to efficient implementation of convolutional
neural networks (CNN) for bird vocalization classification.

The classification model was trained using supervised learning
with selected and preprocessed bird vocalizations from the
Xeno-Canto database of wildlife. The preprocessing and feature
extraction of the audio data involves noise reduction, silence
removal and calculation of psycho-acoustically weighted MEL
spectrograms which were used for CNN model training. With
the applied Sequential CNN classifiers an accuracy of approx.
94% was achieved.

For implementing on an AMD Zynq UltraScale+ MPSoC, the
Python solution of the classifier was analyzed module by module
with a focus on the design principles of hardware software co-
design and HLS. Depending on the requirements of the module,
preprocessing and feature extraction modules are implemented
either as software, hardware description language (HDL) or HLS-
based hardware acceleration, while CNN inference is performed
on the processing system using the PYNQ framework. The
different variants are compared in terms of latency, resource
usage and development effort.

The evaluation showed that HLS is highly effective for ab-
stract, dataflow-oriented signal processing tasks, such as spec-
trogram generation. It can significantly reduce development time
without compromising performance. However, traditional HDLs
remain superior for low-level interfaces such as I2S audio input
due to their precise control over timing and protocol details.
The CNN implementation using PYNQ has shown that high-
level frameworks can effectively integrate with custom hardware
modules to create a cost-efficient, real-time audio classification
system on an SoC.

Index Terms—Mel-spectrogram, convolutional neural net-
works, system-on-chip, hardware-software-co-design, high-level-
synthesis

I. INTRODUCTION

Recognizing bird species from audio recordings is a chal-
lenging task due to the variability of vocalization patterns,
background noise, and recording conditions. Recent advances
in digital signal processing and machine learning have en-
abled the development of automated systems that classify bird
vocalizations based on acoustic characteristics (e.g. [1], [2]).

Convolutional Neural Networks (CNNs) trained on prepro-
cessed labeled data have demonstrated strong performance
when applied to mel-spectrogram representations of bird songs
[2].

As part of this work, several data preparation steps were
undertaken. All recordings were obtained from the Xeno-
Canto database [4] and filtered for the Hamburg region to focus
on the most frequently represented species. After filtering
redundant data, the dataset contained 347 species. For the
analysis, however, only the 10 most common species were
selected. Additional preprocessing steps, including normaliza-
tion, noise reduction, and data augmentation, resulted in a
standardized dataset of 1,800 records for further analysis. A
sequential CNN architecture, consisting of convolutional and
fully connected layers, was then trained on mel-spectrograms
and achieved a classification accuracy of approximately 94%.
This trained model provides the foundation for the system
described in this paper.

Although such software-based solutions achieve high accu-
racy on desktop hardware, their deployment on embedded plat-
forms requires efficient mapping of algorithms to hardware to
meet constraints on latency, power consumption, and resource
usage. The increasing availability of computational resources
and flexible System-on-Chip (SoC) platforms opens new pos-
sibilities for embedded applications in signal processing and
machine learning.

In this paper, we extend the trained CNN classifier by
porting it to an AMD Zynq UltraScale+ MPSoC [13]. We
investigate the role of software, high-level synthesis (HLS)
and hardware description languages (HDL) within a hardware-
software codesign approach. By systematically partitioning the
classification pipeline into modules implemented in software,
HDL, or HLS, we analyze trade-offs in terms of latency,
resource utilization, and development effort. Our contributions
are threefold:

« we present a trained CNN-based bird vocalization classi-
fier with high accuracy, and



o we demonstrate its real-time implementation on an SoC,
and

e we provide a comparative evaluation of software, HLS,
and HDL approaches, yielding practical guidelines for
embedded Al applications.

II. RELATED WORK

For classification of bird songs methods of both, conven-
tional sound processing and more recently CNN approaches
are applied. In [1] the focus is on conventional sound process-
ing for classifying bird calls within a single song. Features
are extracted from spectrograms using singular value decom-
position (SVD) to represent key properties of bird syllables.
The approach introduces an ambiguity spectrum, a frequency-
and time-shift-invariant transformation of multitaper spectro-
grams. Similarity between syllables is measured using a cosine
similarity method, and hierarchical clustering determines the
number of clusters automatically. The method emphasizes syl-
lable segmentation, distinguishing between single and double
syllables, which affects classification and may require manual
inspection to correct clustering errors.

Another approach [2] presents bird call classification us-
ing two CNN-based image recognition models, ResNet and
Inception, as part of the BirdCLEF 2019 competition. The
approach is similar to our methodology, as it clusters bird
sounds based on their spectrograms and maps them to species.
Bird sounds are represented by I1-second MEL-scale log-
amplitude spectrograms, reflecting human auditory sensitivity.
Spectrograms with low signal-to-noise ratios were discarded.
To address class imbalance, image augmentation methods
(e.g., Gaussian blur, random cropping, brightness adjustment)
were applied, though the authors later noted some methods
may have corrupted training data. Normalization was applied
based on the mean and variance of the training set. Both CNN
models were trained and compared, with Inception perform-
ing better, likely due to more input parameters. Challenges
included noisy recordings and overlapping bird calls.

The problem of poor labeling in the Xeno-Canto database
is addressed in [3], which focuses on pre-processing to reduce
label noise. The authors designed a “labeling function” to
classify audio as correctly labeled or noise. Audio files were
processed using short-term Fourier transform. Two clustering
methods were applied: unsupervised DBSCAN and supervised
CNN BirdNET-Lite, with outputs compared to identify bird
sounds versus noise. This method suggests an opportunity to
improve dataset quality by filtering mislabeled data and select-
ing the clearest signals, and could be further adapted for multi-
label classification where multiple species sing simultaneously.

In the past, various studies have been conducted on the
efficient implementation of the necessary signal processing
steps on embedded hardware and FPGAs.

A hardware implementation of Mel-Frequency Cepstral Co-
efficients (MFCC)-based feature extraction for speaker recog-
nition on an FPGA platform (Xilinx Virtex-II) is presented
in [5]. The work focuses on optimizing computational com-
plexity and memory usage by using look-up tables and fixed-

point arithmetic. By exploiting parallelism and pipelining, the
FPGA-based solution achieves efficient real-time processing
compared to conventional software approaches. The results
show that MFCC extraction can be effectively implemented
in hardware, offering a cost-effective and scalable alternative
to DSP-based methods.

A Hardware-based acceleration for feature extraction in
automatic speech recognition (ASR) using the MFCC algo-
rithm on a Xilinx Zyng-7000 SoC is applied in [6]. The
approach parallelizes computationally intensive steps such as
Fast fourier Transform (FFT), mel-filtering, and Discrete Co-
sine Transform (DCT) to exploit FPGA hardware capabilities.
Compared to sequential CPU and ARM implementations, the
FPGA design achieved up to 500x and X speedup respec-
tively, demonstrating the significant advantage of parallelized
MFCC processing in real-time ASR systems.

Another hardware chip design for implementing Mel-
Frequency Cepstral Coefficients (MFCC) feature extraction
in speech recognition systems is presented by [7]. The fo-
cus is on reducing computational complexity and memory
requirements by employing a hybrid look-up table scheme
for efficient calculation of elementary functions, while fixed-
point arithmetic minimizes hardware cost without sacrificing
accuracy. The design, implemented on a Xilinx XC4062XL
FPGA, demonstrates an area-efficient architecture for real-time
MFCC extraction.

A hardware/software co-design approach for real-time im-
age and video processing on a Xilinx Zynq SoC using high-
level synthesis (HLS) is used in [8]. Morphological operations
such as dilation, erosion, and convolution were implemented
as hardware accelerators, integrated with software on the ARM
cores. The design achieved significant reductions in execution
time compared to software-only implementations while using
limited FPGA resources, demonstrating the feasibility of HLS-
based co-design for embedded real-time image processing
tasks

HW/SW co-design of the post-quantum cryptographic
scheme BIKE on embedded platforms with Xilinx Zyng-7000
SoCs is introduced in [9]. High-level synthesis (HLS) was em-
ployed to generate hardware accelerators for computationally
intensive primitives (e.g., polynomial multiplications, SHAKE,
SHA-3). The approach optimizes the area-performance trade-
off for small FPGAs and achieves speedups ranging from
1.37x to 2.78 x compared to software-only execution, depend-
ing on the target device. The paper highlights the potential of
HLS-based co-design for PQC implementations under tight
resource constraints

An embedded system for automatic classification of six
Omani date fruit varieties [10] using a hardware/software co-
design on a Xilinx Zyng-7020 SoC Color aextracts shape-
size features from preprocessed and segmented images and
classified with an ANN. Profiling identified feature extraction
and preprocessing as bottlenecks, which were accelerated in
FPGA logic using Vivado HLS and SDSoC. The resulting
design achieved 97.26% classification accuracy and real-time
performance of 10.9 fps, representing a 14x speedup over the



baseline software implementation

Another implementation of a Convolutional Neural Network
(CNN) for object recognition on an embedded FPGA plat-
form (ZedBoard with a Xilinx Zynq SoC) uses the PYNQ
framework [11]. The model is trained offline on CPU and then
deployed for inference. Key performance: 100 ms latency per
image and about 10 images/second throughput on the CIFAR-
10 dataset, with an accuracy of 79.90%. The implementation
uses only a single ARM core on the FPGA for inference;
resource and energy constraints are important considerations.

III. METHODOLOGY
A. Dataset

The dataset used in this work was collected from the
community-driven Xeno-Canto [4] repository, which pro-
vides access to bird vocalizations from across the world.
An initial query for the Germany region yielded more than
37,000 recordings. After filtering out incomplete and irrelevant
records (e.g., grasshoppers, unknown entries, and soundscape
recordings), the dataset was reduced to approximately 33,500
audio files representing 347 bird species. Since the dataset was
highly unbalanced, we restricted the classification task to the
ten most common species, such as the Great Tit and Common
Chaffinch, which together provided a sufficiently large number
of samples for training and evaluation.

B. Data Preparation

The raw audio recordings were preprocessed in several
steps to improve quality and consistency. First, noise reduction
was applied using spectral subtraction methods implemented
in librosa. Second, silence removal and normalization were
performed to eliminate non-informative sections. Both manual
thresholds (e.g., —30 dB for Chaffinch, .60 dB for Tits)
and adaptive thresholds relative to the peak amplitude were
evaluated. The recordings were then segmented into fixed-
length clips of four seconds, ensuring uniformity across the
dataset.

C. Data Augmentation

To further balance the dataset and increase robustness
against variability, each class was augmented by splitting
longer recordings into multiple four-second segments. This
process expanded the dataset to approximately 2,000-2,700
segments, depending on the preprocessing strategy, and pro-
duced more homogeneous training examples.

D. Feature Extraction

For each segment, Mel-spectrograms were computed as
input features. The spectrograms were generated with 128 Mel
filters, a Fast Fourier Transform (FFT) size of 2048, a hop
length of 512 samples, and a sampling rate of 22.05 kHz.
The resulting time-frequency representations were log-scaled
to approximate human auditory perception. Each spectrogram
was resized to 224x224 pixels to match the CNN input
requirements.

E. CNN Model Training

A sequential CNN was designed for the classification
task. The architecture consisted of convolutional layers with
ReLU activation, max-pooling layers, and fully connected
dense layers, ending with a softmax output over the ten bird
classes. The model was trained using the Adam optimizer and
categorical cross-entropy loss, with a batch size of 32 and
10 epochs. Across multiple experiments, the best-performing
configuration achieved a validation accuracy of approximately
94%, particularly when spectral subtraction and normalization
were combined in preprocessing. This trained CNN forms the
foundation of the embedded implementation.

F. System Architecture on SoC

The trained model was deployed on an AMD Zynq Ul-
traScale+ MPSoC (Kria KV260) platform [12]. To exploit
the heterogeneous architecture, a hardware—software co-design
strategy was applied, assigning each module of the audio
classification pipeline to the most suitable execution domain.
The functional roles of the modules are as follows:

e Audio Input Unit (AIU): Implemented in HDL and
HLS, the AIU receives audio data via the I2S interface
and converts it into an AXI stream with precise timing
guarantees.

« Signal Framing Unit (SFU): Implemented both in soft-
ware (on the RPU) and in HLS for comparison. The SFU
applies FIR filtering, performs downsampling, segments
the signal into frames, and applies a Hann window
function.

e Mel Processing Unit (MPU): Designed in HLS with
pipelining and dataflow optimizations. The MPU com-
putes the mel-spectrogram as described in [7], including
FFT and mel filterbank calculations.

o Audio Classification Unit (ACU): Executed on the
processing system (PS) using the PYNQ framework. The
ACU runs the trained CNN to perform the final audio
classification task.

This modular partitioning enabled a systematic evaluation
of software, HLS, and HDL realizations in terms of latency,
resource utilization, and development effort. The overall in-
teraction of the modules is illustrated in the flow diagram
in Fig. 1, which provides an overview of the end-to-end
processing chain. The results of the evaluation are discussed
in Section V.

audio data mono-audio
AIU SFU
audio-frame
spectrum bird species
MPU ACU >

Fig. 1. Block diagram of the audio processing pipeline on the MPSoC



IV. IMPLEMENTATION
A. Audio Input Unit

The AIU is responsible for capturing audio samples from
the I2S audio interface and providing them as a 16-bit AXI
stream. Two implementations were created:

o« VHDL implementation: This variant was adapted from
an existing design. Using a mature VHDL base ensured
reliable operation of the 12S protocol and AXI-Stream
interface with minimal additional effort. VHDL remains
well suited for such protocol-level modules because it
allows precise cycle-level control.

o« HLS implementation: In parallel, the AIU was re-
implemented in C++ and synthesized with Vitis HLS.
This design decision was motivated by the need to
evaluate whether HLS could be a viable alternative for
simple interface modules.

The comparison thus reflects both the reuse of a proven
HDL design and the potential of HLS to replicate its func-
tionality.

B. Signal Framing Unit

The Signal Framing Unit segments the incoming audio into
frames of 2048 samples with 50% overlap and applies a
Hanning window after downsampling the input from 44.1 kHz
to 22.05 kHz. Two equivalent implementations were realized:

o Software implementation: The algorithm was first im-
plemented on the ARM RPU core. This required only
minimal development effort since the framing procedure
consists of simple arithmetic operations.

o HLS implementation: The same algorithm was synthe-
sized with Vitis HLS. Only minor modifications were
necessary (e.g., AXI-Stream interface integration).

By developing both versions, the SFU provides a direct
comparison of software versus HLS in terms of latency,
resource usage, and development effort. The design choice
illustrates how lightweight preprocessing stages can either be
kept in software for flexibility or offloaded to hardware for
increased throughput.

C. Mel Processing Unit

The Mel Processing Unit computes the spectrogram using
FFT, Mel filterbank, and logarithmic scaling. Two HLS vari-
ants were developed to investigate the impact of algorithmic
and synthesis-level optimizations:

o Unoptimized HLS: The initial version directly translated
the algorithm into C++ and synthesized it without prag-
mas. This design required very little effort and served as
a functional baseline to assess throughput and resource
usage under default HLS conditions.

¢ Optimized HLS: To meet real-time constraints and guided
by approaches from [5] and [7], the design was re-
structured at the algorithmic level. Specifically, the FFT
was replaced by a real-valued FFT, reducing redundant
operations, and the Mel filterbank was optimized to elim-
inate unnecessary multiplications. In addition, synthesis

directives such as pipelining, loop unrolling, and dataflow
were applied to further increase throughput.

This stepwise design choice reflects a deliberate trade-
off: the unoptimized variant minimized development effort
but failed to achieve the required performance, whereas
the optimized variant required significantly more design
work—both in algorithmic reformulation and in synthesis-
level tuning—but successfully reduced latency to real-time
levels.

D. Audio Classification Unit

The Audio Classification Unit executes the trained CNN.
In this work, inference was implemented in software using
the PYNQ framework on the PS. The model was deployed in
Python, maintaining compatibility with the training environ-
ment. No hardware accelerator was implemented for the CNN;
instead, the focus was on validating real-time operation of the
end-to-end pipeline and demonstrating the seamless integration
of software-based inference with hardware accelerators for
preprocessing.

E. Integrated System

The complete system integrates all modules via AXI-Stream
interfaces. Four variants were built to systematically evaluate
different design choices:

o AIU: implemented in both VHDL and HLS.

o SFU: only the HLS version was integrated, since the
PYNQ framework required a hardware-based streaming
interface.

o« MPU: implemented in HLS, in both unoptimized and
optimized form.

¢ ACU: implemented in software on the Processing System
(PS) using PYNQ [14].

This setup resulted in four end-to-end system configurations,

summarized in Table IV-E

TABLE I
BREAKDOWN OF VARIANTS
Variants AIU SFU MPU ACU
1 VHDL | HLS | HLS (Std.) | PYNQ
2 HLS HLS | HLS (Std.) | PYNQ
3 VHDL | HLS | HLS (Opt.) | PYNQ
4 HLS HLS | HLS (Opt.) | PYNQ

The final design was implemented and verified in Vi-
vado. Fig. 2 shows the generated block design, including the
streaming connections between AIU, SFU, and MPU in the
programmable logic, and the ACU running on the processing
system under PYNQ.

V. RESULTS

A. Audio Input Unit

The AIU was implemented in VHDL and HLS. Both
versions correctly received the 12S input and produced a 16-
bit AXI stream without synchronization errors. Latency was
one cycle in both cases. Resource utilization is shown in Table
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Fig. 2. Block diagram of the implemented hardware design

V-A. Development effort was higher for HLS due to manual
handling of timing and state machines like with a HDL, while
VHDL allowed an better testbench.

TABLE II
RESOURCE UTILIZATION OF AIU IMPLEMENTATIONS
Variant | DSP | LUT | FF | BRAM
VHDL 0 12 77 0
HLS 0 36 75 0

B. Signal Framing Unit

The SFU was realized as a software implementation on the
RPU and as an HLS design. Both variants correctly performed
downsampling, segmentation, and windowing. Measured la-
tencies and resources are given in Table V-B. The software
version required minimal effort, while HLS needed additional
setup for AXI-Stream interfaces but could be synthesized
directly from the same algorithmic code.

TABLE III
LATENCY AND RESOURCE UTILIZATION OF SFU IMPLEMENTATIONS
Variant Latency [ps] | DSP | LUT | FF | BRAM
Software 2.1 - - - -
HLS 0.3 3 799 | 222 2

C. Mel Processing Unit

The MPU was implemented in two HLS variants. Both
generated correct spectrograms compared to reference data.
Latency and resource utilization are summarized in Table V-C.

TABLE IV
LATENCY AND RESOURCE UTILIZATION OF MPU IMPLEMENTATIONS
Variant Latency [us] DSP | LUT FF BRAM
HLS Standard 169 20 4737 | 5364 14
HLS Optimized 86.4 43 5905 | 6386 14

D. Audio Classification Unit

The ACU executed CNN inference in software on the
Processing System (PS) using PYNQ [14]. Accuracy was 94%,
identical to the training baseline. After initialization, latency
stabilized at 400 ms per classification. The implementation
effort was minimal, as the trained Python model could be
deployed directly in the PYNQ framework.

E. Integrated System

All modules were integrated into a full pipeline. End-to-end
operation was validated with ILA. Total latency for a 4-second
frame was 410 ms, dominated by the ACU. Without the ACU,
latency was 172 ps (standard MPU) and 90 ps (optimized
MPU). Resource usage of the complete design is listed in Table
V-E.

TABLE V
RESOURCE UTILIZATION OF INTEGRATED SYSTEM VARIANTS
Variants | DSP | LUT FF BRAM
1 23 7983 | 9300 17
2 23 8017 | 9298 17
3 46 9104 | 10261 17
4 46 9142 | 10251 17




VI. DISCUSSION

The evaluation of the four system variants highlights dis-
tinct strengths and limitations of VHDL, HLS, and software
approaches within a hybrid SoC design.

AIU (interface-oriented logic): Both VHDL and HLS imple-
mentations were functionally identical. However, the VHDL
design required slightly more manual effort but offered pre-
cise control over protocol timing. The HLS version enabled
faster prototyping but did not provide measurable performance
benefits for this low-level task. This confirms that VHDL re-
mains advantageous for protocol-bound modules where cycle
accuracy is critical.

SFU (lightweight preprocessing): Both software and HLS
implementations of the SFU fulfilled real-time requirements.
The processor implementation was highly flexible and easy to
develop, while the HLS version reduced latency even further
with moderate resource usage. In the integrated system, only
the HLS version could be used due to PYNQ’s streaming-
based architecture. This shows that software remains viable
for simple signal processing, but practical integration require-
ments can favor hardware implementations.

MPU (compute-intensive processing): The contrast between
unoptimized and optimized HLS designs demonstrates the
impact of algorithmic reformulation and synthesis directives.
Applying a real-valued FFT and optimized Mel filterbank
reduced latency by nearly 50%, at the cost of increased
resources. This underlines that HLS can provide significant
performance gains, but only when combined with algorithm-
level optimizations.

ACU (CNN inference): Running the CNN in software
with PYNQ provided functional correctness and seamless
deployment, but introduced the dominant share of system
latency ( 400 ms per frame). While sufficient for validation,
this highlights the need for hardware acceleration or model
compression in future work.

Integrated system: The hybrid architecture validated the
overall concept: preprocessing and feature extraction in pro-
grammable logic (VHDL/HLS) combined with flexible infer-
ence in software. Resource utilization remained moderate in
all variants, leaving sufficient headroom for future extensions.

VII. CONCLUSION

In this paper, we presented a hardware—software co-design
approach for real-time classification of bird vocalizations on
an AMD Zynq UltraScale+ MPSoC. Building on a trained
CNN model that achieved 94% accuracy on mel-spectrogram
inputs, we mapped the classification pipeline onto modular
implementations using software, high-level synthesis (HLS),
and hardware description language (HDL).

The evaluation demonstrated that:

« HDL is the most effective choice for interface-oriented
modules, such as the I2S audio input, where precise
timing is critical.

o HLS provides an efficient and developer-friendly solu-
tion for dataflow-oriented signal processing tasks such
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as spectrogram generation, reducing development effort
while still meeting real-time constraints.

Software execution on the processing system remains
highly valuable for CNN inference and integration, of-
fering flexibility and rapid prototyping despite limited
efficiency.
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