

By Klaus Felten

K. Felten: An Algorithm for Symmetric Cryptography with a wide range of scalability

Page 1

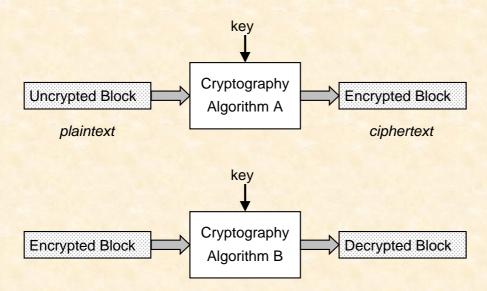
ジ

Fachhochschule Kiel University of applied Sciences

achhochschule Kie

Iniversity of applied Sciences

2nd International Workshop on Embedded Systems, Internet Programming and Industial IT


Contents

- Basic Concept for Symmetric Cryptography
- Block diagram: Encrypting a message
- Block diagram: Decrypting a message
- Algorithms for pseudo random-number generators
- Byte Exchange
- Scalability of the algorithm
- Goal of the warm-up-cycles
- Expense of cracking the key
- Features of the presented algorithm
- Possible weak-points
- Future activities
- References

K. Felten: An Algorithm for Symmetric Cryptography with a wide range of scalability

Basic Concept for Symmetric Cryptography

Characteristic:

The same key is used for encryption and decryption

K. Felten: An Algorithm for Symmetric Cryptography with a wide range of scalability

Page 3

Fachhochschule Kiel University of applied Sciences

2nd International Workshop on Embedded Systems, Internet Programming and Industial IT

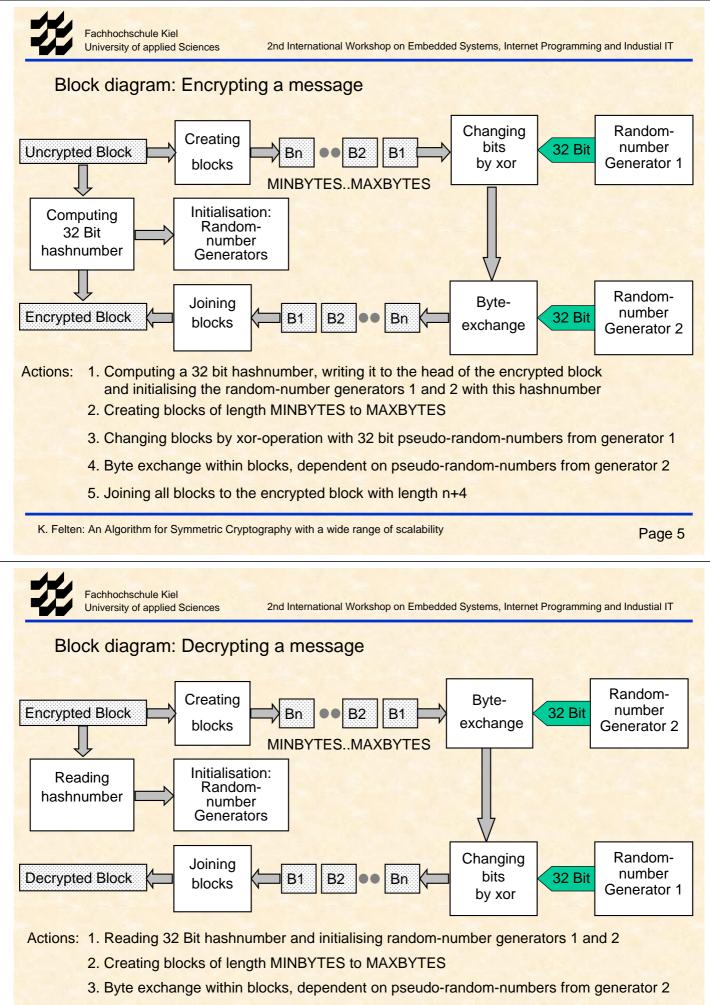
Basic Rules for efficient Cryptography are defined by Shannon:

Confusion:

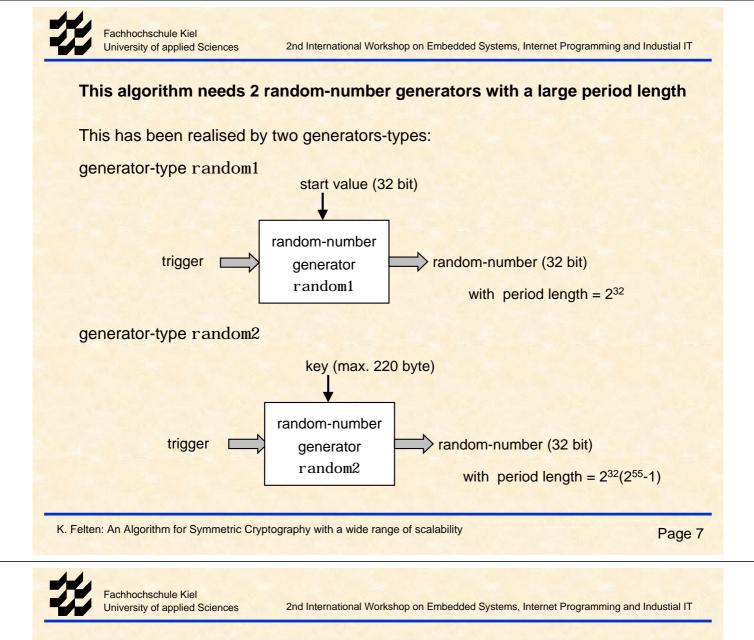
Goal: Hiding the relationship between message and encrypted message

- Good: Any character in the plaintext-block is replaced by another character, but not always the same character
- Bad: Any character in the plaintext-block is replaced by one corresponding character

Diffusion:


Goal: Distribution of changes over the complete encrypted message

Good: If we change one bit of the message, all bits in the encrypted message may change


Bad: If we change one bit of the message, only one bit in the encrypted message will change

Good: If we change one bit of the key, all bits in the encrypted message may change

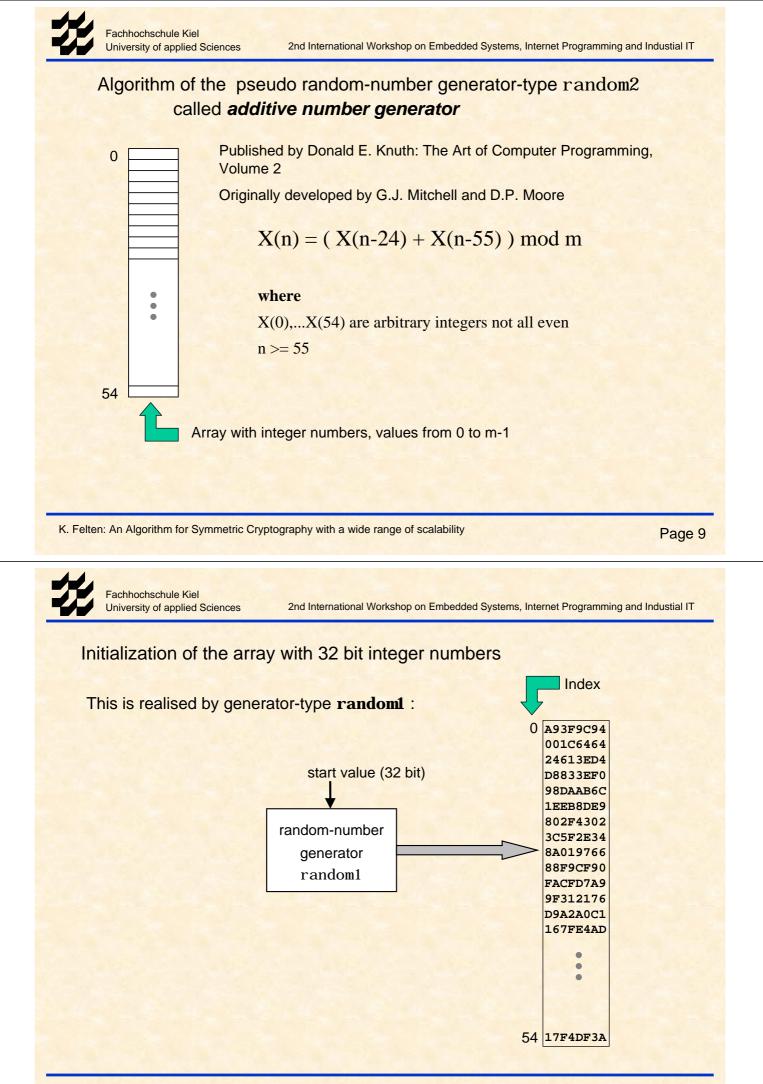
Bad: If we change one bit of the key, only one bit in the encrypted message will change

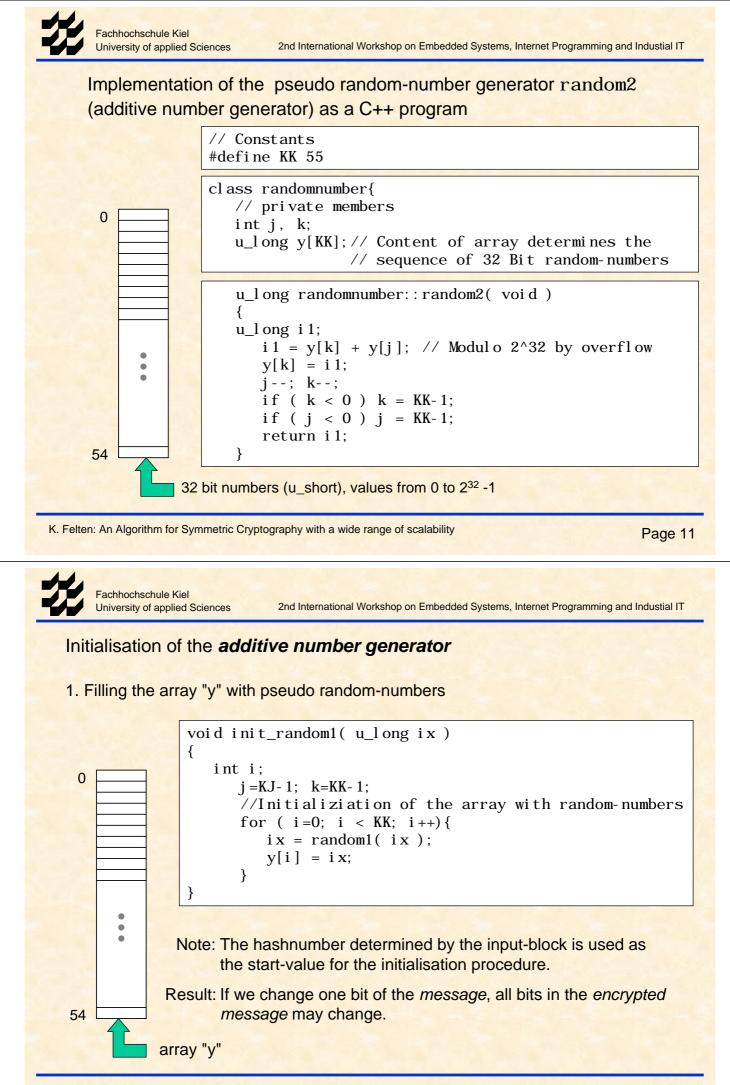
- 4. Changing blocks by xor-operation with 32 bit pseudo-random-numbers from generator 1
- 5. Joining all blocks to the decrypted block

Algorithm of the pseudo random-number generator-type random1

Published by Donald E. Knuth: The Art of Computer Programming, Volume 2

 $X(n+1) = (aX(n) + c) \mod m$

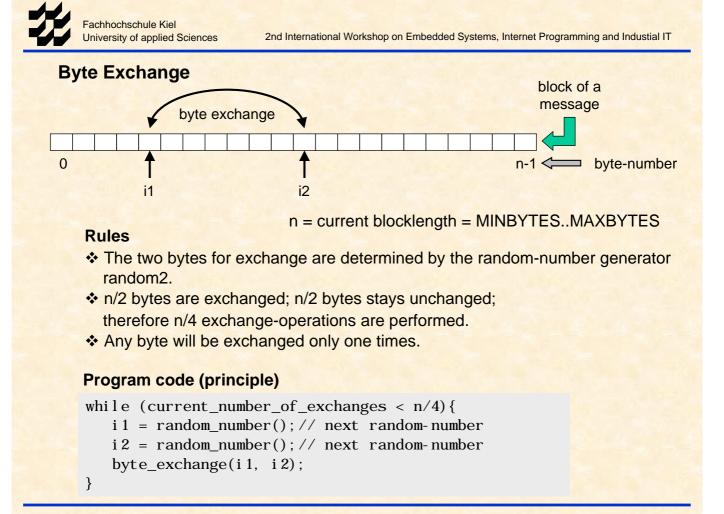

where


a, c are large prime numbers

$$a \neq c, a < m$$

Suitable constants for a 32 bit random-number generator are:

 $\begin{array}{rcl} a &=& 4294967279 &=& 2^32 & -17 \\ c &=& 715827883 \\ m &=& 4294967296 &=& 2^32 \end{array}$


Initialisation of the additive number generator (2)

2. Adding the key, byte by byte, to the array elements

```
void init_random2( char sx[] )
{
    int i, j;
    u_char *py;
    py = (u_char*)y;
    for ( i=0, j=0; i < KK; py++, i++, j++ ){
        if ( sx[j] == '\0' ){
            j = -1;
            continue;
        }
        // Add key[j] to y-Buffer Modulo 2^8
        *py = *py + sx[j];
    }
}</pre>
```

K. Felten: An Algorithm for Symmetric Cryptography with a wide range of scalability

Page 13

Scalability of the algorithm

- key-length from 4 to 220 bytes
- security levels from 1 to 7

The security level determines the value of startloops, used for initialization of the random-number generators 1 and 2:

security level	startl oops	durati on
1	200	10µs
2	2.000	100µs
3	20.000	1ms
4	200.000	10ms
5	2.000.000	100ms
6	20. 000. 000	1s
7	200. 000. 000	10s

The random-numbers generated during the warm-up-cycles are ignored.

K. Felten: An Algorithm for Symmetric Cryptography with a wide range of scalability

Page 15

Fachhochschule Kiel University of applied Sciences

2nd International Workshop on Embedded Systems, Internet Programming and Industial IT

Goal of the warm-up-cycles (startloops)

Every warm-up-cycle needs at least:

- 2 integer additions of array elements
- 2 integer decrement operations
- 2 integer comparisons

The warm-up-cycles must be finished before encryption or decryption may start.

Only in this case the right pseudo random-number sequences from random-number generator 1 and 2 are available.

Result: This forced time-consumption makes it more difficult to break the key.

There are some requirements for security:

- There is no way to get the right pseudo random-number sequence without performing startloops warm-up-cycles
- Special hardware does not have a significantly higher speed than a CPU from Intel or AMD.

Expense of cracking the key (1)

We assume that the attacker

- knows the exact algorithm for encryption/decryption
- is able to cause a known message to be encrypted with the searched key (called: chosen-plaintext-attack)
- tries to get the right key by attempting any possible key (called: brute-force-attack)

Further we assume that

- decryption of a (short) chosen message needs dt seconds
- warm-up-run needs wt seconds

Therefore any trial needs at least tt seconds.

with tt = dt + wt

K. Felten: An Algorithm for Symmetric Cryptography with a wide range of scalability

Page 17

Fachhochschule Kiel University of applied Sciences

2nd International Workshop on Embedded Systems, Internet Programming and Industial IT

Expense of cracking the key (2)

Let us consider the worst case:

- key-length = 4 Byte, using only printable characters (95 characters)
- ✤ dt = 10⁻⁵ s; wt = 10⁻⁵ s; tt = 2*10⁻⁵ s

On the average 95⁴/2 trials are needed to determine the right key.

The required time is:

- $t = 95^{4}/2 * 2*10^{-5} s$
- t = 815 s

Result: Under these conditions it is easy to crack the key.

Expense of cracking the key (3)

Let us consider a further case:

key-length = 4 Byte, using only printable characters (95 characters)

★ dt = 10^{-5} s; wt = 1s; tt ≈ 1s

On the average 95⁴/2 trials are needed to determine the right key.

The required time is:

 $t = 95^4/2 * 1s$

t = 40725313s

t = 11313h (1000 PCs woud need 11.3h)

Result:

Under these conditions it is very difficult to crack even such a short key.

K. Felten: An Algorithm for Symmetric Cryptography with a wide range of scalability

Page 19

Fachhochschule Kiel University of applied Sciences

2nd International Workshop on Embedded Systems, Internet Programming and Industial IT

Expense of cracking the key under normal conditions

- key-length = 6 Byte, using only printable characters (95 characters)
- security level from 1 to 7
- brute-force-attack
- single PC with CPU AMD Athlon 1700+

security level	startl oops	crack time (average)
1	200	85 days
2	2.000	468 days
3	20.000	4.296 days
4	200. 000	117 years
5	2.000.000	1.166 years
6	20. 000. 000	11.654 years
7	200. 000. 000	116.548 years

Features of the presented algorithm

- key-length from 4 to 220 bytes
- block-length from 16 to FILE_LENGTH
- security levels from 1 to 7 by changing only one parameter
 - \Box 1 = quick: encryption/decryption requires 10µs
 - \Box 7 = slow: encryption/decryption requires 10s
- easy to understand
- no hidden features
- easy to implement on PC or workstation
- Encryption/Decryption speed;
 - CPU=AMD Athlon 1700+; input- and output-file on harddisk :
 - Encryption: 2 MB/s
 - Decryption: 3 MB/s

Note: A large key-length makes it possible to choose a key which is easy to remember such as "My neighbors to the left are Frank&Mary"

K. Felten: An Algorithm for Symmetric Cryptography with a wide range of scalability

Page 21

Fachhochschule Kiel University of applied Sciences

2nd International Workshop on Embedded Systems, Internet Programming and Industial IT

Possible weak-points of the algorithm

A chosen plaintext attack may give sufficient information about the internal status of the pseudo random-number generator.

The attacker may be able to predict the random-number sequence.

The hashnumber stored in the encrypted block may give too much information about the plaintext.

Future activities

- Examination of the weak-points.
- Finishing the C++ program
- Publishing the source code

References

- Knuth, D. E.: The Art of Computer Programming. Volume 2. Seminumerical Algorithms. Addison-Wesley 1998
- Schneier, Bruce: Applied Cryptography, Addison-Wesley 1996
- Schneier, Bruce: Why Cryptography is Harder Than it Looks. 1997; www.counterplane.com/whycrypto.html
- Schneier, Bruce: A Self-Study Course in Block-Cipher Cryptoanalysis. 1997; www.counterplane.com/self-study.html
- Krzyzanowski, Paul: Lectures on distributed systems:

Cryptographic communication and authentification. 1997-2001 www.pk.org/rutgers/notes/pdf/crypto.pdf

K. Felten: An Algorithm for Symmetric Cryptography with a wide range of scalability

Page 23

Fachhochschule Kiel University of applied Sciences

2nd International Workshop on Embedded Systems, Internet Programming and Industial IT

WWW Documents

- K. Felten: An Algorithm for Symmetric Cryptography with a wide range of scalability. www.e-technik.fh-kiel.de/~felten/iws2003/crypto_01.pdf.
- K. Felten: Abstract: An Algorithm for Symmetric Cryptography ... www.e-technik.fh-kiel.de/~felten/iws2003/abstract.pdf.
- Test-program crypt.exe for PC with Intel-CPU: www.e-technik.fh-kiel.de/~felten/iws2003/crypt.exe
- C++ Source code and header-file for random-number generators random1 and random2:

www.e-technik.fh-kiel.de/~felten/iws2003/ranclass3.cpp www.e-technik.fh-kiel.de/~felten/iws2003/ranclass3.h

WWW Links

Felten's Homepage: www.e-technik.fh-kiel.de/~felten/

ב> כו

current hints
Cryptography Documents