# Energy Sensitive Routing in Ad hoc Networks

Gao Chao, Information Technology Department of Vaasa Polytechnic (www.puv.fi) In association with Information Technology Department of Vaasa University (www.uwasa.fi) gao.chao@puv.fi

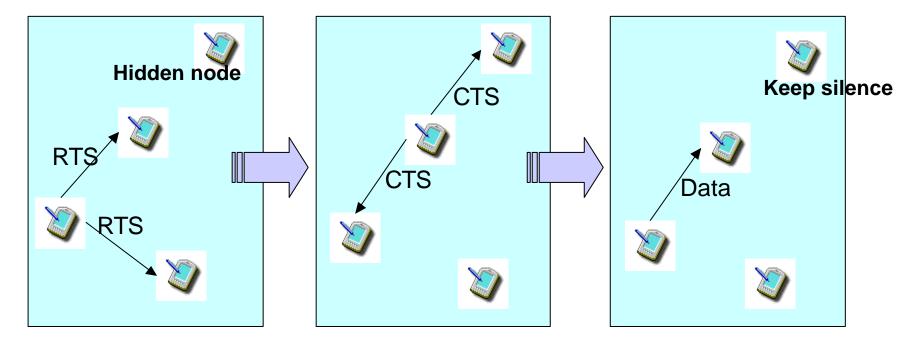
# Table of Contents

- Introduction to Ad hoc Networks
  - Definition
  - O Physical Layer
  - O MAC Layer
  - Multihop
- Ad hoc Routing
  - O Proactive Routings
  - Reactive Routings
- Energy Consideration in Ad hoc Routing
- Q/A and Discussion

#### Ad hoc Networks — Wireless without Infrastructure

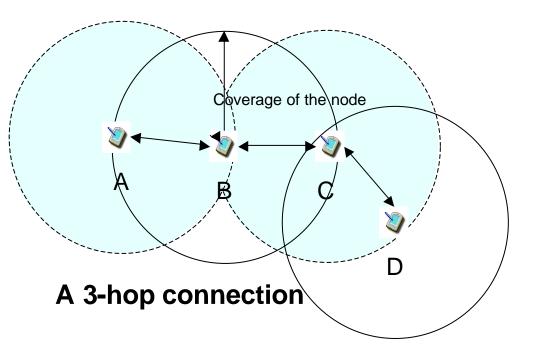
- Wireless networks work without any central administration.
- Comparing to mobile cellular telephone systems, ad hoc networks have smaller cover range.
- Ad hoc is generally packet-switch system.
- IEEE 802.11 standards

# Ad hoc Physical Layer


- Basics:
  - ○2.4G Hz FHSS (Frequency Hopping)
  - ○2.4G Hz DSSS (Direct Sequence)
  - Infrared
- 1Mbps or 2Mbps raw data rate
- 11Mbps or higher data rate (IEEE 802.11a, IEEE 802.11b)

# Ad hoc MAC layer

- Ad hoc MAC layer uses a Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA) protocol.
- First the radio interface (carrier) is sensed.
- Source node sends (broadcasts) a Request-to-Send (RTS) packet with the destination node address
- The specified node replies a Clear-to-Send (CTS) packet


# Ad hoc MAC layer

RTS-CTS can eliminate Hidden Node and Expose Node problems



# Multihop Ad hoc Networks

- The devices in Ad hoc network generally have limited power supply
- Ineffective to use high transmission power to cover all nodes in the network
- Data packets are relayed by intermediate nodes – multihop ad hoc network



### Energy consumption by Multihop

• For a given threshold receiver power *Pr*, the minimum transmit power *Pt* is  $Pt(d) = Pr \frac{d^n}{K}$ 

- *n* is the path loss exponent, typically is 4. *K* is a constant.
- With an intermediate node between the source and destination, the transmit power (energy) is the sum of two hops:

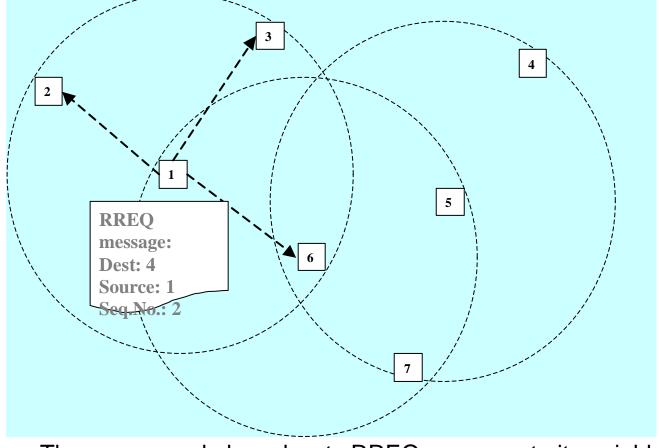
$$Pt'(d) = Pt(d_1) + Pt(d_2)$$
 where  $d = d_1 + d_2$ 

One can derive that the transmitting energy consumed by two-hop scenario is 1/8 of the single hop if the intermediate node has the same distance to the source and destination

# Ad hoc Network Routing

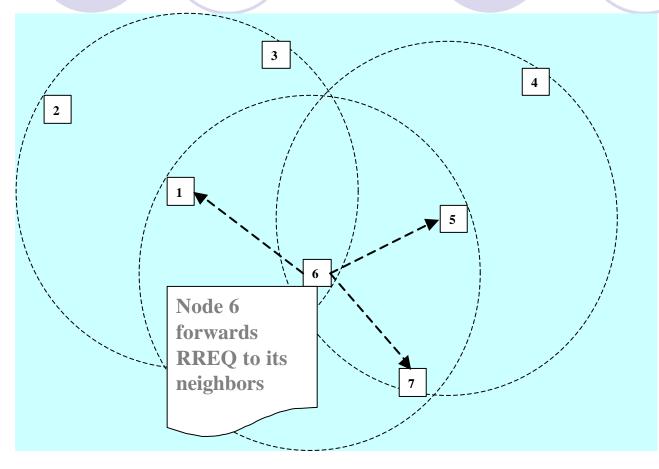
- Routing protocols are necessary in order to find a path between source and destination nodes in multihop ad hoc networks.
- Routing is challenged by the dynamic topology of the network.
- Basically there are two classes of routing algorithms: proactive and reactive.

# Ad hoc Network Routing


- In proactive routing, all the nodes maintain and periodically refresh routes to any other node in the network, even no traffic is carried on a maintained route.
- In reactive routing, a route is established on demand.
- Research shows that reactive routing schemes generate less overhead packets, thus consume less power than proactive ones.

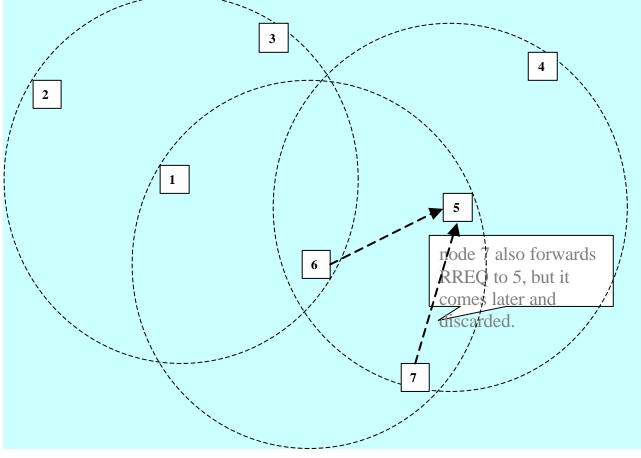
# Reactive Routing Example: Ad hoc On-demand Distance Vector (AODV)

AODV is a reactive routing algorithm


- In AODV, there are 4 types of overhead packets (Routing Signalling):
  - HELLO to notify neighbours
  - RREQ (Routing Request) to initiate a routing procedure
  - RREP (Routing Reply) to confirm a route
  - RERR to indicate a route failure

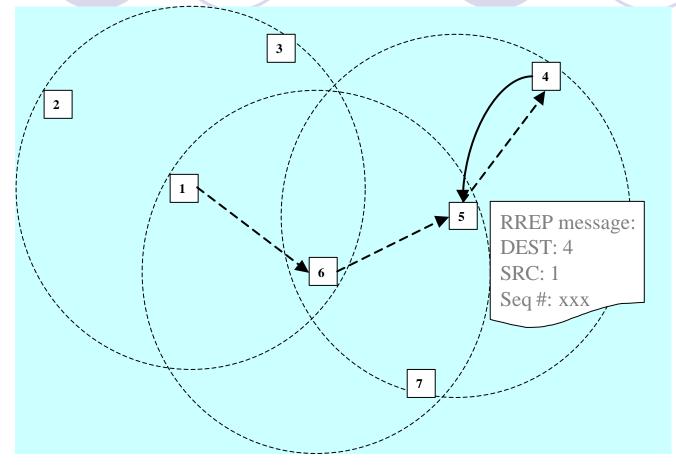
# AODV – Path Finding (1)




The source node broadcasts RREQ message to its neighbours.

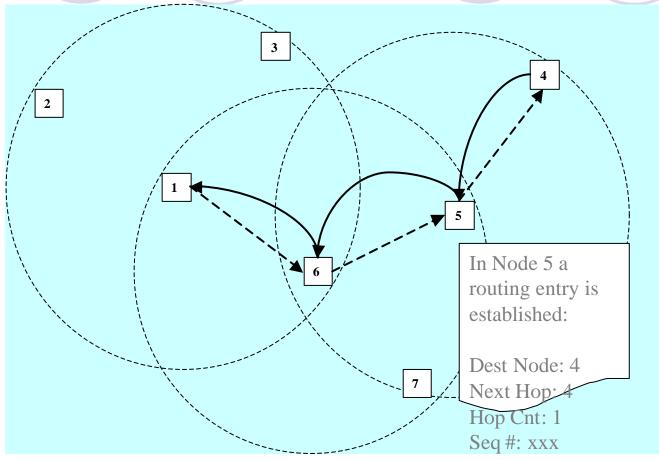
# AODV – Path Finding (2)




On receiving RREQ, an intermediate node will broadcast it again.

# AODV – Path Finding (3)




Duplicated RREQ is discarded.

# AODV – Path Finding (4)



The destination node\* replies RREP message when it receives a RREQ.

# AODV – Path Finding (5)



The RREP will be propagated through inverse path to confirm a route.

#### **Energy-Conserving Routing Schemes**

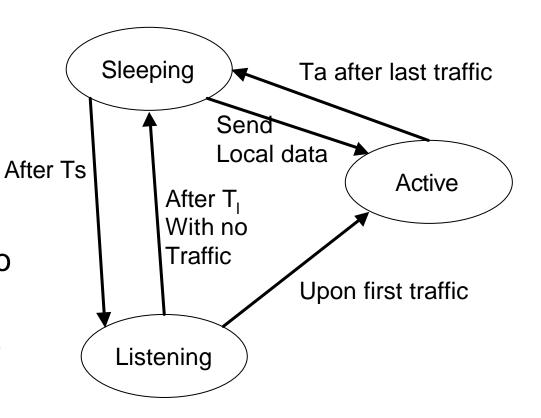
Network Device Power Control

 Adaptive Energy-Conserving Routing (AECR)
 Coordinated Energy-Conserving Routing (CECR))

 Battery-Lifetime Determination

 Time Delay On-Demand Routing (TDOR)

 Battery-Lifetime & Traffic-Load Determination


 EAODV for Optimal Path Discovery\* (EAODV)

# Energy-Conserving Routing (1)

- Adaptive Energy-Conserving Routing for Multihop Ad hoc Networks, by Ya Xu, John Heidemann, and Deborah Estrin, <u>http://citeseer.nj.nec.com/310126.html</u>
- The research shows that in receiving/listening mode, the power consumption is still considerable.
- Two algorithms are presented here:
  - OBasic Energy-conserving Algorithm (BECA)
  - Adaptive Fidelity Energy-Conserving Algorithm (AFECA)
- Basically these two algorithms will determine the chance that a node may participate in a route.

# Energy-Conserving Routing (1)

- In BECA, nodes are in one of three states:
  - O Sleeping
  - Listening
  - Active
- When in the sleeping state, radio is turned off to save energy.
- A timer is used to change state when time-out.



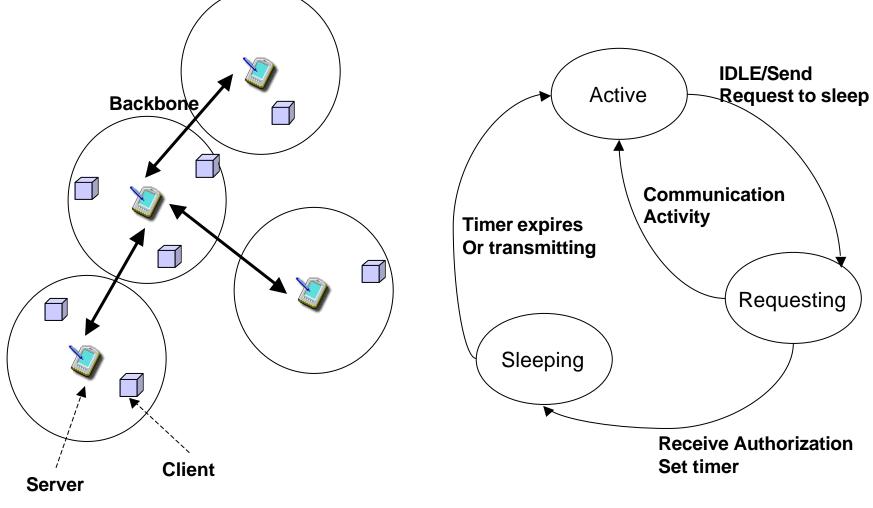
# Energy-Conserving Routing (1)

- In AFECA, a node can improve energy conservation by estimating node populating and increasing sleep time when other nodes are available.
- The sleeping timer is simply set as Tsa, which is

$$T_{SA} = random(1, N) \times T_S$$

 Here N is the number of neighbours, Ts is the unit sleeping time in BECA.

# Energy-Conserving Routing (2)

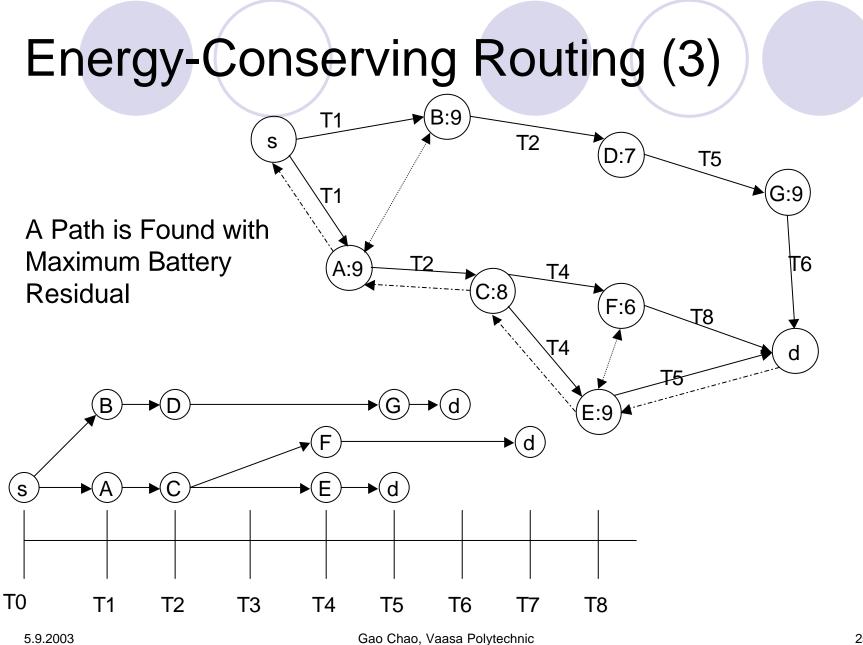

- Coordinated Energy Conservation for Ad hoc Networks, by Chavalit Srisathapornphat, Chien-Chung Shen, Communications, 2002. ICC 2002. IEEE International Conference on, Volume: 5, 2002
- An algorithm called <u>Coordinated Energy Conservation</u> (CEC) for ad hoc was introduced
- A set of <u>backbone nodes</u> are selected to coordinate energy conservation.

5.9.2003

# Energy-Conserving Routing (2)

- A backbone node works as a server, which serves a group of clients.
- A server and its clients use Coordinated Energy Conservation Algorithm to collaborate.
- A client sends its states (include intension to transmit, battery remaining, etc) to its server.
- The server replies either a grant to transmit or a duration that the client can turn off the radio interface (sleep).

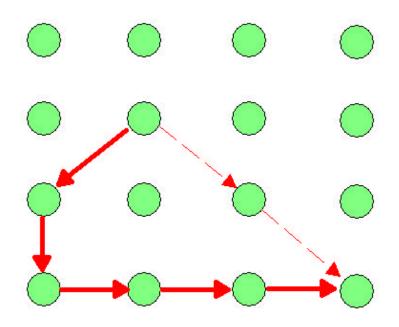
# Energy-Conserving Routing (2): Network topology and Client Algorithm






# **Energy-Conserving Routing (3)**

- Implementation of an Energy-Efficient Routing Protocol: Time Delay On-Demand Routing Algorithm (TDOR), Tran Minh Trung and Seong-Lyun Kim, Proc. IEEE Conference on Mobile and Wireless Communications Networks, Stockholm, Sweden, 2002
- In TDOR, a node holds the RREQ packet for some times, inversely proportional to its own residual battery capacity.


$$T_i(C_i^t) = \frac{1}{C_i^t}$$



### **Optimal Path Routing AODV**

-Based on Ad hoc research group result at Vaasa University

- In the original AODV, the destination node sends RREP message immediately after receiving the first RREQ message.
- This mechanism cannot guarantee that the optimal path is found.



# **Optimal Path Routing AODV**

- Meanwhile, the intermediate nodes involved in the established route may be already heavily loaded (traffic consideration) or running out of battery power (energy aware).
- A new approach is considered, in which some Additional (Extended) information is added to the RREQ and RREP packets. It gives the network possibilities to find an optimal route.
- The purpose to let the nodes in ad hoc network equally participate the network activity. Thus energy dissipation is equally decreased and the total network lifetime increases.

### The Extended Message in RREQ

 In the extended message of RREQ, we need route select field (RSF), which is a metric of the node's battery residual and the traffic load the node has taken recently Type (8) | reserved bits (5) | others (11) | hop count (8)

RREQ ID

**Destination IP address** 

**Destination Sequence Number** 

**Originator IP address** 

**Originator Sequence Number** 

**Route-select Field** 

32-bit word

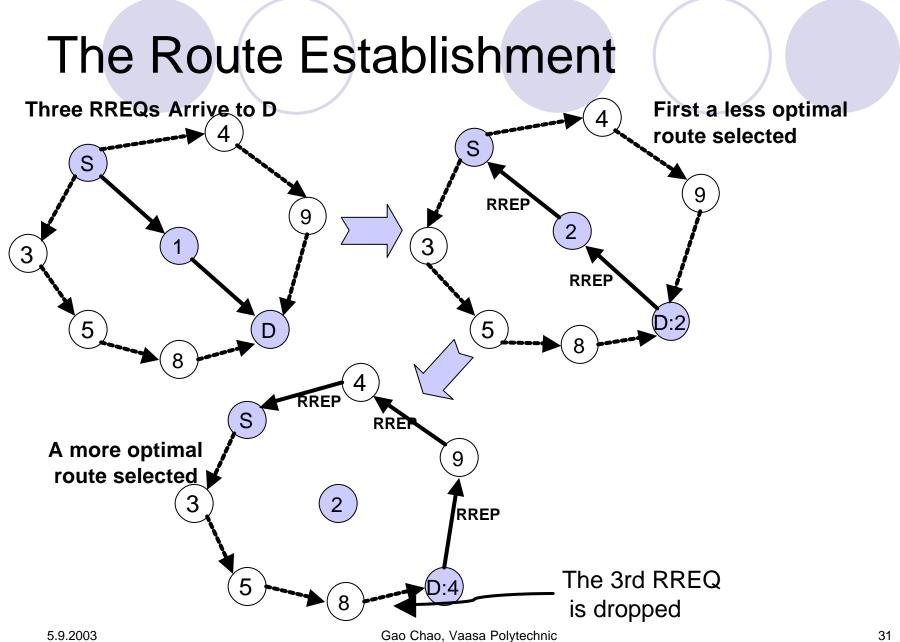
# Route Select Field (RSF)

Noted as

$$\boldsymbol{t}_{R} = \frac{B}{L}$$

Battery Lifetime **B** 

○ Can be retrieved from OS (Linux)


Traffic Load L is a historical value.

Can be given by the ratio of the number of bits transmitted by the node in a fixed past time.

$$L = \frac{N_b}{T_0}$$

#### The Route Establishment

- The source node initiates a RREQ will maximum RSF.
- Every node that has received a RREQ will check the RSF and calculate its own battery/load metric. If it is lower than the one in RSF, it will replace it by its own.
- The destination node will reply the first arrived RREQ to ensure the minimum latency of route establishment. Meanwhile, it will keep the value of RSF in its cache.
- If another RREQ arrives at the destination, the node will compare the RSF with its cached value. If the new RSF is greater than the cached one, send a RREP and replace the cache by the new value.
- The source node will change its route table if another RREP comes from the same destination.



#### Advantages & Disadvantages

#### Trade-offs:

- O Longer Packet Length of RREQ and RREP
- More than one copy of RREP may be sent out
- Node load is increased to calculate RSF and more memory required.
- Gains:
  - Energy Conservation
  - Optimal Path possibility increase
  - Data packets propagation improved through the better path
  - Compatible with original AODV nodes

# Conclusion

- Routing plays an important role in energy conservation (to select suitable nodes to relay packets).
- Energy conservation routing increases the node complexity and decreases the throughput of the network; meanwhile, it prolongs the network lifetime thus increases overall performance.
- Questions described here are still open

#### References

- Charles E. Perkins. Ad hoc on-demand Distance Vector (AODV) routing. Internet-Draft, draft-ietf-manet-aodv-09.txt, November 2001
- 2. Y. Xu, J. Heidemann, and D. Estrin. Adaptive Energy-Conserving Routing for Multihop Ad hoc Networks, Tech. Rep. 527, USC/Information Science Institute, Oct.2000
- 3. Chavalit Srisathapornphat, Chien-Chung Shen, Coordinated Energy Conservation for Ad hoc Networks, Communications, 2002. ICC 2002. IEEE International Conference on , Volume: 5, 2002
- 4. Sheetalkumar Doshi, Timothy X. Brown, Minimum Energy Routing Schemes for a Wireless Ad hoc Network, IEEE InfoCom 2002
- 5. Dmitri D. Perkins, Herman D. Hughes, and Charles B. Owen, Factors Affecting the Performance of Ad Hoc Networks, Communications, 2002. ICC 2002. IEEE International Conference on, Volume: 4, 2002, Page(s): 2048 -2052 vol.4