How to utilizethe J2EE™ Framework in Engineering Projects

by
Gerd Stange

Univergty of Applied Sciences Kid, Germany
Abstract

The specification of the Java 2 Enterprise Edition (J2EE) defines a complete platform for the
comfortable development of web gpplications. It involves Enterprise Java Beans (EJB),
Servlets and Java Server Pages (JSP). Both Serviets and JSP, aso caled web components,
are powerful condructs for the dynamic generation of web content. They alow direct access
to Java Enterprise Beans which exig in two different forms. Sesson Beans manly serve
management purposes thus outlining the business logic context of a sesson whereas each
Entity Bean is rdaed to a wdl defined busness entity which in turn may be directly mapped
to a database entry. Thus Sesson Beans typicaly ded with non persstent data whereas Entity
Beans typicaly describe persstent data. As part of the J2EE specification the Java Enterprise
Beans together with auxiliary support classes on the one hand and the web components on
the other hand are to be deployed into so cdled containers each: Web components will be
surrounded by the web container and Enterprise Java Beans will resde in the EJB container.
The container gpecification takes responghility for dl the deals of cient sarver
communication. It is this concept that dlows the gpplication developer to focus her atention
on the application specific agpects of a software project.

Whereass most of the literature avalable on J2EE gpplications is dedicated to purely
adminigrative tasks as they occur in busness environments like e-banking, e-commerce etc.
the present tak sudies the usefulness of the J2EE framework for engineering consultants by
way of an example Typicdly applications in this fidd rey on heavy computing cgpabilities
required on the sarver dde, idedly to be accessed by a thin client. 1t will be shown that
business objects may be easily extended to technica objects represented by Entity Beans and
that the business logic may be eadly extended to the complex technicd logic underlying the
solution domain to some technica problem. As an example the trgectory of an dectricadly
charged particle indde a magnet, which will be specified by a thin dient, will be cdculated as
the RUNGE-KUTTA solution of the underlying st of two coupled differentia equetions of
second order. The result set will be dynamicaly generated by Java Server Pages (JSP) and
thus sent back to the client. Smilar solutions may be used in complex computer Smulation
environments employing the FINITE ELEMENT METHOD (FEM) or the BOUNDARY
ELEMENT METHOD (BEM). It is obvious that the technicad pat may be eegantly coupled
with a busness pat, the latter taking respongbility for customer authentication, charging for
received services etc. As a result the REE framework turns out to be an idea platiform for
complex conaulting services offered by enginesring consultants induding the business
organizetion.

The J2EE platform, an overview

The development of distributed gpplications in computer networks is a demanding task. Most
of these gpplications are business gpplications. They follow a 3-tier client server architecture.
In the ided case the remote cliet as the fird layer should be a “thin” dient, manly
responsible for the pure presentation of business data The second layer located on a distant
saver should take care of the business logic. Findly the persstent business data entities

resde on the third layer which is physcdly redized by a database. Such an architecture is
extremdy wdl suited for typicd budness demands such as scdability and ease of
replacement of businesslogica and business entity units.

As Figure 1 illudrates, the J2EE platform has been desgned according to this principd
architecture following a component model with JSP Pages and Enterprise Beans as the most

important components.

J2EE J2EE
Application 1 Application 2
l.pglinaﬁm Dlxnamin Client Client
lient HTML Pages Tier Machine
Web
P n Server
pr - Machine
Enterprise i Enterprise Business
Beans Beans Tier
Database
.ﬁ!&sr Server
Machine

Figure 1: Multitiered Applications /J2EE™ Tutorial/

One of the mogt important benefits of the J2EE plaform is that dl the technicd detals
necessary for establishing and maintaining the communication link between dient and server,
for the safe trestment of transactions, for the reliable management of persstent data, for user
authentication and for keeping track of concurrent operations etc. are under the responghility
of the component transaction monitor (CTM), which is pat of its specification. The J2EE
platform hides dl these complex detals from the gpplication developer, thus dlowing her to
focus on the business specific aspects of the application.

The many technica sarvices just mentioned are provided by the J2EE server with its
underlying sarvices in the form of a container for every component type. Containers are the
interface between a component and the low-level platform-specific functiondity thet supports
the component. Before a Web, enterprise bean, or application client component can be
executed, it must be assembled into a J2EE application and deployed into its container.

The assembly process involves specifying container settings for each component in the J2EE
goplication and for the JREE gpplication itsdf. Contaner settings customize the underlying
support provided by the J2EE server, which includes services such as security, transaction
management, Java Naming and Directory Interface (JNDI) lookups, and remote connectivity.
Here are some of the highlights:

The J2EE security mode guarantees access by authorized users.

The J2EE transaction modd lets gppear dl methodsin atransaction asasingle unit.
JINDI lookup services provide a unified interface to naming and directory servicesto
look up remote components.

Through he J2EE remote connectivity mode aclient invokes methods of a distant
component asif it were in the same virtua machine.

The following Figure 2 illudrates the rdationship between the different J2EE components
and their corresponding containers (WEB- and EJB-Container) and how these containers are
embedded in the J2EE Server.

i
Serviet JSP Page

r,-—~:._ Web Container
Apgclﬂnn
ient

Application

Database

Client [Enterprise * Enterprise
Container : Bean Bean

Client Machine 1 ‘EJE Container

Figure 2: The J2EE Server and Container Concept /J2EE tutoria/

In the above figure it is important to note that the J2EE architecture includes access to the
server resources by the traditional so called Application Client as well as by the modern
concept of a“thin” client represented by a browser.

Java Enterprise Beans asthe work horses
Asmentioned above there are two types of Java Enterprise Beans.

Session Beans stand for logical, business and sesson management with al the
required methods.
Entity Beans represent the (mostly persstent) business entities.

From the viewpoint of scdability and the ease of change it is very important to clearly
diginguish between these two: Whereas Sesson Beans ae responsble for the system
behavior as awhole, Entity Beans represent system its state.

Enterprise Beans will never be directly accessed by clients or some other components
(including other beans), which then play the role of dients again. Rather they are visble to
the outsde world only by their intefaces, which however are implemented by them. Every
Enterprise Bean has two types of interfaces for each locad and remote access. This results in a
tota of 4 interfaces:

The HOME locd/remote interface is respongble for life cycle events such as the
creation or the destruction of the bean etc.

The local/remote interface exposes the businesslogica content of the bean.

One may think of this concept as of a contract between the bean and its interface, dlowing
an easy replacement of the bean by another one in the case of change of the underlying
businessrules.

The J2EE platform for engineering projects

Most of the applications of the J2EE platform described in the literature cover the fidd of
busness gpplications like e-banking, e-commerce etc. There is no reason, why this same
platform should not be samilaly wel suited for engineering applications. Obvioudy there is a
drong andogy between busness entities and enginering entities — this giving rise to the
proper use of Entity Beans — and between business logic and enginearing logic, which mainly
condsts of mathemdticd rules — this giving rise to the use of Sesson Beans. What is even
more interesting: Both fidds of agpplication may be directly combined into one unique
goplication with the result that engineering services offered by the engineering pat of the
system may be immediately integrated with the business part. The latter may take care of dl
kinds of customer services and volume dependent accounting. In the following section the
Magtrajectory project will be presented as an example for the engineering aspects of a J2EE
solution.

The Magtrajectory Project asan Example

To show the bendfits of the J2EE plaiform for the solution of engineering problems the
Magtrgectory project offers computer smulation services to a traditional application client
and to a “thin” WEB dlient. The sarvice is the solution of a set of coupled ordinary differentia
equations as they describe the trgectory of a charged paticle insde a magnet. The client
requests the user to enter a magnet Id or to enter her own magnet data and then run the
gpplication. The magnet data are perdgently stored in a database table of the MagnetDB
database.

The following figure 3 shows the UML use case diagram:

UM L magtrajector
— CreateMagnet_and_Run
% \
Actor SelectMagnet_and_Run

Figure 3: Use Case diagram of the Magtrgjectory Application

The magnets to be sdected or to be created are the engineering entity units. They are under
the respongbility of the MagnetsBean Entity Bean. All the management and caculation steps
necessary will be managed by the MagtrajectoryBean Session Bean, which in turn employs

the following helper classes.

MagnetsBean to select or create a Magnets object from/in the database.

Magnet to create and hold a technicad magnet object with the implemenation of a
uitable interface

DiffEquation, which describes the set of coupled differentia equations.

SartPar to describe the particle and its start conditions.

Trajectory to describe the trgjectory data and

RungeKutta being responsible for the numerical caculation procedure.

The following figure 4 gives an overview over dl these dassesin an UML class diagram.

Trajectory RungeKutta
T
1
1
1
v
Difquration
StartPar Magnet
MagtrajectoryBean [T~~~ ﬁ’:} — MagnetsBean

MagnetsHome

Figure 4: UML Class diagram of the Magtrgectory Application

It is obvious that the complete andyss of the Magtrgectory project requires an intimate
knowledge of the underlying physics of rddividic patice dynamics indde magnetic fidds
and furthermore of dl the detalled steps necessary in the numerica solution procedure of a
coupled st of differentia egquations usng the Runge-Kutta scheme. This is beyond the scope
of the present report. Rather the emphasis lies on showing tha the J2EE platform is wdl
adapted to the needs of a didributed solution of farly complex engineering problems.
Therefore in the following figure 5 a rough UML collaboration diagram will be presented,
which may be consdered as a firg outflow of the physica and numericd anayss mentioned

above.

This figure dealy illudrates the dominating management role the MagtrgectoryBean plays
in the Magtrgectory project.

<<comment>>

step 9 loops until
trajectory leaves
magnet

9. getnewVa ues() =

T/ Trajectory RK/:RungeKutta
8. create()—>
7. Integrate() 1
P/:StartPar M1/:Magnet
6. init() 1 10. getDIffERHS() ¢
3. create() f
4. create() .\ 5. create() 1
1. create()—>
MTB/:MagtrajectoryBean M/:MagnetsBean

Z rmoByPimaryKey() >

Figure5: UML collaboration diagram of Magtrgectory project

All the above condderations show the srong pardldity between business and engineering
projects. In both cases the Sesson Beans take responshility of the sysem behavior as a
whole, posshbly employing a large number of helpers, whereas the Entity Beans take care of
the entitiesin the corresponding context.

To run the system as a client server system the software has to be properly deployed into the
save and dient contaners mentioned above. The following UML deployment diagram
figure 6 shows the details.

The Beans are located in the Server/EJBContainer, the JSP Server Pages have been deployed
into the Server/WEBContainer. There are two sorts of Clients The traditiond Application
Client accesses the Server via a LAN- / WLAN- / WAN- link and the interfaces of the
MagtrajectoryBean, whereas the WEB Client connects to the server in a completely different
way: First the corresponding browser downloads the index.jsp Java Server Page from the
WEBContainer, which is located on the server, via the Internet link and will then be
connected to the MagtrajectoryBean interfaces via the the runtrajectory.jsp Java Server Page
after the user has pressed the runtrajectory button displayed on the index.jsp page.

<<description>>
Application Client

g
v,
‘e
.
.

<<description>>

cl

ient

E MagtrajectoryAppClient

Java Server Pages

Servér/WEB-Container

E :':‘runtrajectory.jqo

~

ﬂ index.jsp
[—

<<description>>

]

internallink

Client/Inter net Browser

‘e
‘e
g
o

<<description>>
"Thin" Internet
Client

]

i : Session bean
LAN- / WAN- | WLAN - link]
1 1
1 1
H H
Served/EJB-Coftainer
' v
""""" 12001 | ey
rajector
| Magtrajectory t= a0t
PO 1 | 1
~~”~ V 1]
~9 : i I:%
NlagtrajectoryHome \4
gtrajectory O Mags
MagnetsHome
E MagnetsBean
L

<<description>>
Entity Bean

]

Figure 6: UML deployment diagram of Magtrgectory Project

It requires mention that the JSP Server Pages paticipae in the overdl scenario in a very
redricted way: They are soldy responsble for
input data, dl the computationd work being left to the server. Especidly for heavy weght
enginering projects as eg. FEM- or BEM- computer smulations this concept brings
remarkable benefits. The resources and competences may be concentrated on well equipped

presentation and for

sarvers, which may be accessed by lightweigt clients from everywhere.

recelving some smple

Sample Output from the Magtrajectory Project

The following figures illusrate some sample output from the Magtrgectory System. The firg
figure 7 shows the dart screen as delivered from the index.jsp Java Server Page, where the
user is requested to ether sdect a magnet by entering the magnet_Id or to enter new magnet
data. Here the magnet Id 100 has been entered with dl the remaning fidds s&t to 0. This
means that the magnet with the magnet Id = 100 must have been previoudy entered into the
database.

When pressing the Run Trajectory button control will be transferred to the runtrajectory.jsp
Java Server Page. This in turn will connect to the MagtrgectoryBean interface and hand over
the input data from the previous page.

— .
R

scientific englneerlng mnsultants since 1970

consult

!"' =

> _.J..
Welcome at our Test Sitel

Cdculate the trgjectory of a100 MeV positron insde a rectangular magnet.
Please sdlect magnet by entering [Magnet_1d,0,0,0] or cregte new magnet by filling dl the
fidds[Magnet_Id,L,W,B]:

s Metin e

I Run Trajector

Figure 7: Browser Start Page of Magtrgjectory Project

The next figure 8 showsthe response after having pressed the Run Trajectory button.

]
(o]
]

scientific englneenng mnsultants since 1970

consulf

= .'_1-

"‘.-._L

Magtr ajectory

Y our magnet with Id = 100 has the values:

Length[m] Width[m] Induction[T] |

1.0 1.0 0.6683

And here your time-, X- and Y-components of a 100 MeV positron trgectory follow as
received from solving a coupled set of 2 second order differentia equations with the
RUNGE-KUTTA-method:

X-coordinatelm| Y -coordiantelm|
0,0000E00 0,0000 0,5000
5,0000E-11 0,0150 0,4991
1,0000E-10 0,0299 0,4978
1,5000E-10 0,0448 0,4960
2,0000E-10 0,0597 0,4937
2,5000E-10 0,0744 0,4911
3,0000E-10 0,0891 0,4879
3,5000E-10 0,1037 0,4844
4,0000E-10 0,1182 0,4804
4,5000E-10 0,1325 0,4760
5,0000E-10 0,1467 0,4711
5,5000E-10 0,1608 0,4659
6,0000E-10 0,1747 0,4602
6,5000E-10 0,1884 0,4541
7,0000E-10 0,2019 0,4476
7,5000E-10 0,2152 0,4407
8,0000E-10 0,2283 0,4334
8,5000E-10 0,2412 0,4257

Figure 8: Browser Result Page of Magtrgectory Project

-10-

Conclusions

In the present paper the possbilities of applying the J2EE framework to engineering projects
have been dudied by way of the example gpplication Magtrajectory. After a brief
introduction into the J2EE plaform the Magtrajectory project has been introduced by a
series of UML diagrams. Magtrgectory caculates the trgectory of a charged particle inside a
magnet by numericaly solving a set of coupled ordinary differentid eguations usng the
Runge-Kutta scheme.

It turns out that dl the benefits of the J2EE framework agpplying to business gpplications are
equdly vdid in the context of engineering agpplications. These benefits are to be seen in
hiding dl the technicd detalls of a digtributed application from the gpplication developer. The
combinaion of the Sesson Bean MagtrajectoryBean, which is responsble for al the
management and cdculationd work, with the Entity Bean MagnetsBean, which is
reponsble for keeping track of the engineering entities magnets is as draightforward as in
business applications. This concept guarantees for scaability of goplications as well as for the
ease of replacement of components.

Future development will be focused on the combination of engineering aspects and business
aspects, the latter including such topics like automatic load dependent accounting,
authentication and user access control due to different user roles There is no doubt that this
combination will be an ided base for consultance work in engineering snce besdes the
demanding engineering services al kinds of customer services may be included.

References
[JPEE Tutorid/

/Monson-Haefel 2003/
Monson-Haefd, Richard

[Farley e.a. 2003/
Farley, J. ea

/Stange 2003/
Stange G.

-11-

Java Sun Online Tutorid

Enterprise Java Beans, 3. Ed.,
O’ Rellly, Cambridge 2003

Java Enterprisein aNutshell, 2. Ed.
O'Reilly, Cambridge 2003

Lecture notes and severd internd notes,
source programs and deployed programs

