

**Technological Educational Institute of Crete** 

# Mobile Robot Position Estimation using unsupervised Neural Networks

George Palamas, George Papadourakis and Manolis Kavoussanos

## Introduction

Localization is a term for the task of identifying places in the environment after prior exploration and map-building by the robot

Localization is one of the foundamental problems to be solved when designing a navigation system. If a robot does not know where it is, it cannot efectively plan movements or reach target positions

# **Cases to be considered**

### continuous localization (position-tracking or relative positioning)

- > an initial estimate of the robot's position is available
- Comon method to keep track of the position relies on odometry
- need for a mechanism that can update the correct location of the robot.
- errors in the estimate are accumulated (wheel slippage, uneven floors, etc).

lost robot problem (global localization or absolute localization)
> no initial or approximate estimate is available
> explicit model of environment needed

SLAM (Simultaneous Localization and Mapping):How does a mobile robot simultaneously localize and build maps of the environment in an unknown environment

# General Methods to mobile Robot Global Self-Localization

Using active beacons, the transmitter of these usually uses light or radio frequencies.

A popular implementation is the Global Position System (GPS) Promising to become universal navigation solution for almost all Automated Vehicle systems

However, this system cannot be used indoors

- Landmark based method, distinct features in the environment can be detected and intentified by the robot (e.g. doors, corners, patterns on the floor)
- Probabilistic techniques, current robot's perception is matched against a world model of the environment
  - Markov Localization
  - Monte Carlo Localization
- Dead Reckoning
  - Kalman filters

# **Bio-mimetic Robot Navigation**

Biologically Inspired Robots: Capturing behaviors of biological systems such as ant colonies, snake movements onto robots to perform tasks that otherwise prove difficult

#### Animal navigation principals

- Animals learn to navigate using data gathered from interacting with the world
- High degree of system autonomy in unstructured environments (even for insects like bees or ants)

#### Prerequisites for realistic service robotics

- No need for special apparatus such as radio beacons or Global Position Systems (GPS)
- Avoid modifications to surrounding environment (e.g. artificial landmarks)
- > No need for a-priori knowledge of the environment at the design time
- Ability to perform in dynamically changing environments
- Adaptability in a way that excludes human operators

# **Place Cells**

Place Cells in rodent brains (O'Keefe &Dostrovsky, 1971): neurons found in part of the brain called hippocampus

- Neuron activity correlated with the rat's position in an environment
- □ Activity depends largely on visual cues
- □ Sensitive to animals motion (still active in the dark)





Hippocampal neurons firing patterns [Kazu Nakazawa et.al, 2004]

Human Hippocampi with extensive navigation experience (taxi drivers) were significantly larger than those of control subjects *(Frackowiak, 2000)* 

## **Kohonen's Self Organizing Feature Maps**

- □ SOMs learn to classify data *without supervision*
- Representation of multidimensional data in much lower dimensional spaces usually one or two dimensions
- Information storage in a way that any topological relationships within the training set are maintained.



Training data consists of vectors, *V*, of *n* dimensions: *V1, V2, V3...Vn* Each node contain a corresponding weight vector *W*, of *n* dimensions: *W1, W2, W3...Wn* 

## Learning Algorithm Overview

Weights initialization (typically to small random values)
Calculate the Best Matching Unit

$$Dist = \sqrt{\sum_{i=0}^{i=n} (V_i - W_i)^2}$$

V is the current input vector and W is the node's weight vector

Determining the Best Matching Unit's Local Neighbourhood



□ Adjusting neighbor Weights (e.g. Gaussian function)



# **Topology Preserving**



### Initial position of nodes



#### **Position after training**

# **Unsupervised Learning for Robot Navigation**

### Task

Autonomous robot navigation in an unknown environment

#### Goals

- > Find a useful internal representation
- Let the robot build/learn the map itself

### Challenges

- > navigate independently of changes in the scene (Light conditions, reallotment of furniture before or after learning cycle, animals or pets walking around)
- > Efficiency on handling noisy sensor information.
- Elimination of perceptual aliasing
- >Low computational cost for a time-realistic position estimation mechanism

### Approach

Self organization of perceptual signatures (sensor input vectors)

## **Sensors and Honeybees**

## Infrared and Ultrasonic sensors

Short range, may imply interference and wraparound
Both are cheap and easy to use
Usually no need for preprocessing is required

### □Vision sensors

Provide the richest source of information Dificult to obtain meaningful information **\***Omnidirectional cameras:

- Large field of view
- orientation independency



Image of the entire environment acquired without rotation



Considerable evidence indicates that honeybees memorizes visual snapshots and correlates them with the currently perceived image to aim goal reaching

- □ Use of ensembles (multi-net) of self-organizing maps (SOM)
- Test & select approach to find the best performing ensemble from a set of alternatives
- Ensembles showed significant improvement over their single SOM counterparts
- Simulation of a Nomad200 mobile robot encircled evenly with 16 ultra-sonic and 16 infra-red sensors
- Comparison of the reliability results for both IEV and CEV methodologies



(a) Individual Evidence Vector (IEV). (b) Common Evidence Vector (CEV).

Common Evidence Vectors for Self-Organized Ensemble Localization Gerecke U. et.al., (2003), Neurocomputing 55: 499-519

- Global Localization based on current and preceding perceptions of the world
- Topological clustering using Self-Organizing Feature Maps
- Experimental procedures with a Nomad200 mobile robot for one settled and one clattered environment.
- Disambiguation of two locations with identical perceptual signatures, if the perception precedings those two locations differ
- Episodic mapping mechanism outperforms static mapping mechanism, irrespective of experimental parameters such as bin sizes or history length
- Too much episodic mapping produces worse results than static mapping

"Meaning" through Clustering by Self-Organisation of Spatial and Temporal Information Ulrich Nehmzow (1999) LNCS 1562, 209-229



The episodic mapbuilding mechanism: First SOM layer clusters current sensory perception Second SOM layer clusters the last t perceptions

"Meaning" through Clustering by Self-Organisation of Spatial and Temporal Information Ulrich Nehmzow (1999) LNCS 1562, 209-229

- Location Estimation generated from Landscape changes detected via viewpoint shifts
- Position information acquired from Hierarchical SOM
- Effectiveness for practical use confirmed in a hospital with a convalescent ward



Acquisition of World Images and Self-Localization Estimation Using Viewing Image Sequences Hirokazu Madokoro et.al. Syst Comp Jpn, Vol 34, No 1, (2003)

- Application of the topology preserving capabilities of two different self-organizing maps
- □ GNG adapts better than network with predefined topology (SOM)
- SOM nodes does not reflect the sequence of different zones in which The corridor is divided
- □ GNG forms always a perfectly topology preserving mapping



Self-organizing maps versus Growing Neural Gas in a Robotic Application Paola Baldassarri et.al. (2003) LNCS 2687, pp. 201-208 Robot models environments using not sensed data, but sequences of executed actions

- > Robot is behavior based (does wall –following in enclosures)
- Sequences of actions obtained and transformed into real-value vectors
- Vectors inputted to SOM.
- Method independent of a start point using partial action sequence

#### □ Shapes of rooms restricted to rectangles



**Behavior Based Robot** 



**BI** transformation



Experimental environment

Recognizing Environments from action sequences Using self-organizing maps S. Yamada (2002) Applied Soft Computing 4, 35-47

#### > Addressing the problem of perceptual aliasing

- □ First, a SOM provides a shortlist of candidate locations
- Second, robot moves a short distance (using relative odometry)
- All of current candidate grid locations that are consistent to a move from previous candidate location gives the evidence score
- Studies run on a realistic simulation of a nomad200 robot
- Methods of evaluation (accuracy determined by the distance between neighbor grid points)
  - □Static testing of the SOM
  - **Testing the reliability of localization**



The robot environment

| Radius of Uncertainty | Static Test | Localization |
|-----------------------|-------------|--------------|
| 5                     | 54.6%       | 46.2%        |
| 8                     | 79.3%       | 71.0%        |
| 10                    | 84.5%       | 79.2%        |
| 12                    | 87.1%       | 84.8%        |
| 15                    | 89.0%       | 88.8%        |
| 20                    | 90.5%       | 92.0%        |
| 30                    | 91.9%       | 93.4%        |
| 40                    | 92.3%       | 93.6%        |
| 50                    | 93.2%       | 94.4%        |
| 100                   | 96.4%       | 96.8%        |
| Nearest Grid Point    | 63.2%       | 51.0%        |

Percentage correct for static and localization reliability

Quick and Dirty Localization for a lost robot Uwe Gerecke & Noel Sharkey (CIRA-99)

#### SOM trained with range-finder images to represent sensor views Problem: Similar images make SOM to over-fit data



SOM Weight Vectors as sensor Views.

Toward Learning the Causal Layer of the Spatial Semantic Hierarchy using SOMs Jefferson Provost and Patrick Beeson and Benjamin J. Kuipers