
•f

•f

•f

•f

•f

•f

•f

•f

Semantic web: tutorial

Kimmo Salmenjoki
Department of Computer Science

University of Vaasa, Finland

Contents

I Introduction
II Different aspects of the semantic web
III Personalized services with context
IV Semantic web: WHAT, WHY, HOW and CORE

HOW (p. 31-)
V Examples of .NET based software engineering:

context, services, semantic information
VI Conclusions

Background

• fast and continuous web evolution with
• (XML technologies)
• (web services)
• (personal and mobile needs)

(R)evolution of XML

• http://www.w3.org/20
00/Talks/1206-xml2k-
tbl/slide10-0.html

Web with information and methods

http://www2004.org/

II Different aspects of the
semantic web SW

• Semantic web ”WHAT”: knowledge
management

• Semantic web ”WHY”: web based
knowledge integration and applications

• Semantic web ”HOW”: technologies and
tools for SW

Semantic web ”WHAT”

• knowledge management
• what is the SW?
• why do we need SW?
• SW and web services
• what’s after SW?

Knowledge management
• Problem: how to find and organize

information on/with web?
• The active management of

information that turns into it into
knowledge by selection, addition,
sequence, correlation, and
annotation

• [2] Michael C. Daconta, Leo J.
Obrst, Kevin T. Smith: The
Semantic Web: A guide to the
future of XML, Web Services and
Knowledge Management, John
Wiley, 2003,
http://www.wiley.com/legacy/com
pbooks/daconta/sw/

What is the SW?

• The explicit representation of the semantics underlying
data, programs, pages and other web resources will enable
a knowledge-based web that provides a qualitatively new
level of service

• Automated services will improve in their capacity to assist
humans in achieving their goals by “understanding” more
of the content on the web, and thus providing more
accurate filtering, categorizing, and searching of these
information sources

• This process will ultimately lead to an extremely
knowledgeable system that features various specialized
reasoning services

Why do we need SW?
• the four stages progress from data with minimal

smarts to data embodied with enough semantic
information for machines to make inferences about it

• Text and databases (pre-XML): the “smarts” are in
the application and not in the data

• XML documents for a single domain: data smart
enough to move between applications in a single
domain, for ex. XML in the healthcare industry

• Taxonomies and documents with mixed
vocabularies: dat can be classified in a hierarchical
taxonomy. Simple relationships between categories
in the taxonomy can be used to relate and thus
combine data. Thus, data is now smart enough to be
easily discovered and sensibly combined with other
data

• Ontologies and rules: new data can be inferred from
existing data by following logical rules
[mechanically!], for ex. Automatic translation of a
document in one domain to the equivalent (or as
close as possible) document in another domain

SW, XML and web services

• With this semantic web (SW):
a machine-processable web of
smart data

• http://www.w3.org/2001/sw/
• XML only provides syntactic

interoperability. In other words,
sharing an XML document adds
meaning to the content;
however, only when both
parties know and understand the
element names

What’s after SW?

• Formal class models: Ontologies are used to
represent formal class hierarchies, constrained
properties, and relations between classes

• W3C’s OWL Web Ontology Language (against
WOL the owl in Winnie the Pooh!)

• Trust: verifying the sourse of statements is a key
part of the semantic web

• SW will be practical, in terms of computing
power, within three years, [2]

III Personalized services with
context

• Towards semantic information with…
• ubiquitous computing
• context
• DLR the Digital Living Room lab
• Dilemma: how to combine the general and

personal knowledge management and
information organization needs?

Personalized services with context
• Web as personal

space
• Context handling

with events and
actions in the
MyHome portal

• Microsoft
Passport and
Alert usage with
SDK

• MyServices

From web content to context based
services

using .NET, XML, web services with RDF and OWL

Digital livingroom (DLR)

Devices in DLR lab of Technobothnia
Server / PC
Webcams

Entertainment
TV card

Digital & Analog TV and Radio
Speaker

Mobile devices: PDA, Smart phone
LAN, WLAN, Bluetooth

The communication through through PDAs and other wireless
devices inside or outside the DLR

IV Semantic web

• Semantic web ”WHAT”: personal
knowledge management

• Semantic web ”WHY”: personal web based
knowledge integration and applications

• Semantic web ”HOW”: technical
approaches for SW

Semantic web ”WHAT”: personal
knowledge management

• make the previously
general knowledge
management of the
SW personal

Semantic web ”WHY”:

• business case for the SW
• status of the SW
• metadata with XML technologies
• web service evolution
• web based knowledge integration and

applications
• personal…

Business case for the SW

• By 2005 the Gartner Group reports,
“lightweight ontologies will be part of 75
percent of application integration projects”
(J. Jacobs, A. Linden, G G, GG Research
Note T-17-5338, 20-Aug, 2002)

• The organization, that has the best
information, knows where to find it, and can
utilize it the quickest wins

Status of the SW

• The next big trend in web services will be semantic-
enabled web services, where we can use information from
web services from different organizations to perform
correlation, aggregation, and orchestration

• Adobe is reorganizing its software meta data around RDF.
Because of this change, “the information in PDF files can
be understood by other software even if the software
doesn’t know what a PDF document is or how to display
it”

• Company Ontoprise sells (and buys?) ontologies,
http://www.ontoprise.de/home

Metadata with XML technologies
• Meta data increases the fidelity and granularity of our data. The way to

think of about the current state of meta data is that we attach words (or
labels) to our data values to describe it. How could we attach
sentences? What about paragraphs? The motivation for providing
richer data description is to move data processing from being tediously
preplanned and mechanistic to dynamic, just-in-time, and adaptive

• Inference engines: CWM Closed World Machine,
http://infomesh.net/2001/cwm/

• RSS Resourse Description Framework Site Summary,
http://www.xml.com/pub/a/2002/12/18/dive-into-xml.html

• IMS http://www.imsproject.org for interoperable learning technology
• OAG Best Practices and XML Content for Everywhere-to-Everywhere

Integration, http://www.openapplications.org

Web service…

• Because a web service does not need to
focus on presenting styling, the focus for
creating them is purely on business logic,
making it easier to reuse web services as
software components in your enterprise

• MVC Model- View- Controller paradigm

… evolution
• XACML eXtensible Access Control Markup Language by OASIS,

http://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=xacml or
http://xml.coverpages.org/xacml.html

• The idea of XACML is the XML documents (or SOAP messages
themselves) can describe the policy of who can access them

• DAML-S is an ontology for web services,
http://www.daml.org/services/

• In addition, Semantic Web Enabled Web Services (SWWS) is a
comprehensive web service description framework and discovery
framework to provide a scalable web service mediation,
http://swws.semanticweb.org/

• Together both these technologies have the potential to increase
automated usability of web services

Web based knowledge integration
and applications

• possibilities:
• using XML with context (data structure)
• integration of information sources

(coordination)
• automate the information production and

access (methods for data)
• knowledge aware applications (like the

ImageBlog)

Semantic web ”HOW”: technical
approaches for SW

• use XML data: namespaces, Schemas, RSS,
and

• web services: SOAP, WSDL, UDDI
together

• and/or core SW technologies (RDF, RDFS,
OWL)

• within applications (or on the whole web!)

V .NET based software engineering

• .NET web service platform
• service systems with context
• MS.NET service examples: Alert,
Passport, Notification services
• context and semantic information

Online video lecture ” Understanding the Framework ” at
http://msdn.microsoft.com/theshow/ and more technical .Net material at
http://docs.msdnaa.net/ark_new/Webfiles/courseware3.htm

.NET web service platform

Microsoft Alert system in .NET

• Passport
authenticated
users subscribe
to alert or
notification
services

• DLR context and
it’s changes
create automated
alerts

User

.NET
Passport

B2C Notification System

Register
Login

Associate
Logon

Go

Subscription
Management

Notification
Systems

Subscribe

Unsubscribe

Register

Sign In

Sign Out

Subscribe

Unsubscribe
.NET
Alerts

User

Mail
Server

SMS
Server .NET

Alerts

Event Triggers
(External)

E
ve

nt
s

Subscriptions

Notifications

A
lerts

User Identity
Management

User Identity

A
lerts

MyServices

• various Microsoft
tools like

• .NET platform and
Compact
Framework for
mobile
applications

• utilizing W3C’s
XML, web service
and semantic web
standards

http://www.uwasa.fi/~ksa/ubi/case2_portal.htm

(Present) Tools for RDF

• IsaViz: A Visual Authoring Tool for RDF,
http://www.w3.org/2001/11/IsaViz/

• Sesame server at http://www.openrdf.org/
• Jena – A Semantic Web Framework for

Java, http://jena.sourceforge.net/
• HP SW research at

http://www.hpl.hp.com/semweb/

IV Semantic web: CORE HOW

• technologies
• knowledge presentation
• knowledge usage
• knowledge-centric organization

SW technologies

• RDF
• RDF containers
• N3, reification, tools
• RDF Schema
• DAML+OIL to OWL
• non-contextual modelling

RDF
• RDF = Resource Description Framework

Ideas for RDF usage

• An RDF resource stands for either electronic resources,
like files, or concepts, like “person”. One way to think of
an RDF resource is as “anything that has identity”

• The resources in RDF must be identified by resource Ids,
which are URIs with optional anchor Ids. This is important
so that a unique concept can be unambiguously identified
via a globally unique ID. This is a key difference between
relying on semantics over syntax

• Capturing statements in a formal way allows slow
aggregation of a corporate knowledge based in which you
capture processes and best practices, as well as spot trends.
This is knowledge management via a bottom-up approach
instead of a top-down approach

RDF (XML serialisation)
• RDF Primer http://www.w3.org/TR/rdf-primer/

RDF containers

• Three types of RDF containers are available to
group resources or literals:

• Bag: An rdf:bag element is used to denote an
unordered collection

• Sequence: an rdf:seq element is used to denote an
ordered collection (a “sequence” of elements)

• Alternate: An rdf:alt element is used to demote a
choice of multiple values or resources

Writing RDF: N3 notation

• N3 example of reification
(Jane has tested Mary’s
web page and asserts that
it passes the accessibility
tests)

• http://www.w3.org/Desig
nIssues/Notation3.html

• http://infomesh.net/2001/
05/notation3/

Reification “making statements
about statements”

• The method of reifying statements in RDF is to model the statement as
a resource via explicitely specifying the subject, predicate, object and
type of the statement. Once the statement is modelled, you can make
statements about the modeled statement

• The reification is akin to statements as arguments instead of statements
as facts, which is useful in cases where the trustworthiness of the
source is carefully tracked. This is important to understand, as
reification is not applicable to all data modelling tasks. It is easier to
treat statements as facts (!)

• Some current SW applications explicitly eliminate reification from
their knowledge bases to reduce the complexity

Why is RDF not in the mainstream?

• RDF doesn’t yet play well with XML documents
• There is a fairly esoteric issue regarding a difference between how XML

Schema and RDF process namespaces. This has led many people to view RDF
and XML documents as two separate paths for meta data

• (This is not true!: RDF is serialized as XML means that both XML Schema
and RDF share common syntax, W3C works to embed RDF in XHTML and
XML documents, for more see RDF in HTML: Approaches,
http://infomesh.net/2002/rdfinhtml/ and SMORE tool)

• Parts of RDF are complex:
• More complex than XML, because of mixing metaphors (Table 5.1 next page),

the serialization syntax (RDF syntax allows the RDF graph to be serialized via
attributes or elements), and reification (another level of abstraction, matches
natural language, but a foreign concept to all the other data communities!, with
reification everything is just an assertion (and you must potentially follow a
potentially infinite chain of assertions…))

RDF metaphors for its modeling
primitives

• Early RDF examples
are weak

• don’t highlight the
unique characteristics
of RDF

• Dublin Core DC, RSS
even highlighted in the
RDF Primer

EntityRelationEntityDatabase

DestinationLinkSourceWeb link

NodeEdgeNodeGraph

ValuePropertyClassObject-oriented

ObjectPredicateSubjectLanguage

PART3PART2PART1METAPHOR

Table 5.1 RDF metaphors for
modelling

How to see the real points of RDF
(beyond the syntax!)?

• Most RDF authors write their RDF assertions in N3 format and
then convert the N3 to RDF/XML syntax via a conversion tool
(like Jena’s n3 program)

• RDF literals can be types via XML Schema data types, or RDF/XML
document integration in an RDF schema for DC at
http://dublincore.org/documents/dcmes-xml/

• Another way to solve the validation problem is to have the namespace
URI point to a document, which describes it as proposed by the
Resource Directory Description Language (RDDL), http://RDDL.org

• For ideas see Make Your XML RDF-Friendly by Bob DuCharme,
John Cowan, http://www.xml.com/pub/a/2002/10/30/rdf-friendly.html

• RDF Schema is a lightweight ontology vocabulary layer on RDF
• Noncontextual modelling makes RDF the perfect glue between

systems and fixed data models

RDF Schema

• If we use the triple to denote class, class property,
and value, we can create class hierarchies for the
classification and description of objects. This is
the goal of RDFSchema

• RDFSchema is a simple set of standard RDF
resources and properties to enable people to create
their own RDF vocabularies. The data model
expressed by RDFSchema is the same data model
used by object-oriented programming languages
like Java. The data model for RDF Schema allows
you to create classes of data

Key components of RDF Schema

•rdfs:Class: an element
that defines a group of
related things that share a
set of properties
•rdfs:label
•rdfs:subclassOf
•rdfs:Property: In OOP,
you define a class and
everything it contains. In
RDFS, you define
properties and state what
class they belong to

RDF/S

• rdfs:domain
• rdfs:range
• rdfs:type
• rdfs:subPropertyof
• rdfs:seeAlso
• rdfs:DefinedBy
• rdfs:comment
• rdfs:Literal
• rdfs:XMLLiteral

in OOP we are going down from the class to
the properties. In RDFS, we are going up
from the properties to the class

Editing RDF/S

• Protégé open source ontology editor at
http://protege.stanford.edu/

• After modelling the classes, Protégé allows
you to generate both the RDF Schema and
an RDF document if you create instances of
the Schema (tab labelled “Instances” in the
Protégé window)

SMORE editor

•SMORE Semantic
Markup, Ontology and
RDF Editor,
http://www.mindswap.org/
~aditkal/editor.shtml
•SMORE allows to embed
RDF markup inside of
HTML documents during
the HTML authoring
process

What is Non-contextual Modeling

• Two key aspects of noncontextual modelling:
• Non-contextual modelling uses explicit versus implicit

relationships: XML ducments create a hierarchy of name/value pairs.
XML does not state the relationship between the name and the value
(except implicitly!). On the contrary, RDF uses an explicit relationship
between the name and the value with the triple structure: subject,
predicate, and object

• A graph is less brittle than a tree: RDF graphs can be robust in the
face of change and suffer less from the bridle data problem and need
for versioning and compatibility issues that can plague XML
documents

• Why RDF model is different from the XML model by T. Berners-Lee,
http://www.w3.org/DesignIssues/RDF-XML.html

• Order us often very important in a document but not important to an
RDF graph

to contextualize or not?
• The question is weather your specific application is better served by fixing the

context or not fixing the context. In some ways this is the classical trade-off
between flexibility in the face of change versus reliable execution via static
processes. When the environment is stable and the volume is high, it is both
easier and more efficient to strictly fix the context of documents and messages
to reduce the errors and increase throughput. In the opposite case flexibility
and noncontextual modelling are the best choice

• RDF takes the trend toward composable context to its logical conclusion. How
does RDF implement noncontextual modelling? RDF creates a collection of
statements and not a document. Therefore, the context of a set of RDF
statements cannot be determined beforehand; instead, it is wholly dependant
on the statements themselves and the relationships between the sentences. In a
sense, this disconnection between a list of statements and a hierarchical tree is
the root cause of the difficulty in encolding RDF in RDF/XML syntax,
because it attempts to marry a list of statements with a hierarchical tree
structure

RDF, TAP etc.

• In this example the RDF captures statements about the
organizations, suborganizations, and people discussed in
the HTML page

• TAP project at Stanford, http://tap.stanford.edu/ for
coherent semantic web

• TAPache is a module for the Apache HTTP server that
enables you to publish RDF data via a standard web
service called getData(). This allows easy integration of
distributed RDF data

• What the Semantic Web is not - answering some FAQs of
the unconvinced by T. Berners-Lee,
http://www.w3.org/DesignIssues/RDFnot.html

Knowledge presentation

• ontology spectrum
• taxonomies
• ontologies
• syntax, structure, semantics and pragmatics
• logic and logics

Ontology spectrum
• Ontology can be…
• a Taxonomy
• a Thesaurus (words and

synonyms)
• a Conceptual Model (with

more complex
knowledge)

• a Logical Theory (with
very rich, complex,
consitent, meaningful
knowledge)

Taxonomies

• knowledge with minimal hierarchic or
parent/child structure

• definition of a taxonomy: the classification
of information entities in the form of a
hierarchy, according to the presumed
relationships of the real-world entities that
they present

Ontologies

• An ontology defines the common words and concepts (the
meaning) used to describe and represent an area of
knowledge

• An ontology is an engineering product consisting of “a
special vocabulary used to describe [a part of] reality, plus
a set of explicit assumptions regarding the intended
meaning of that vocabulary”- in other words, the
specification of a conceptualisation

• When describing an are of knowledge- a domain- we
describe the important things in the domain, their
properties, and the relationships among the things. If we
were to elaborate our description, we may even include
rules about the domain

DAML+OIL to OWL

• DARPA Agent Markup Language DAML+OIL by
DARPA, http://www.daml.org/

• http://www.w3.org/TR/daml+oil-reference
• Web Ontology Language OWL,

http://www.w3.org/2001/sw/WebOnt/ W3C standard
• Both DAML+OIL and OWL also directly use XML

Schema data types
• Feature comparison of RDF/S, DAML+OIL and portions

of OWL, see http://www.daml.org/language/features.html

OWL

• Ontologies like OWL are layered on top of RDF
• Many see ontologies as the killer application for

the semantic web and thus believe they will drive
the adoption of RDF

• OWL has classes (and subclasses), properties (and
subproperties), property restrictions, and both
class and property individuals

• Class constructs such as subClassOf, disjointWith,
intersectionOf, unionOf, complementOf

OWL: Ontology representation
levels

A simple language, but one that is more expressive than
RDF/S. Simple cardinality constraints only (0 or 1)

OWL Lite

Slightly constrained OWL. Properties cannot be individuals,
for example. More expressive cardinality constraints

OWL DL (description logic)

The complete OWL. For example, a class can be
considered,both as a collection of individuals and an
individual itself

OWL Full

DESCRIPTIONLANGUAGE LEVEL

•Level 1- The knowledge representation level
•Level 2- The ontology concept level
•Level 3- The ontology instance level

Ontology tools

• Ontoedit ontology editor,
http://www.ontoknowledge.org/tools/ontoed
it.shtml

• OilEd, http://oiled.man.ac.uk/

Accessing SW by machines
• DAML+OIL and OWL have a logic behind them, a logic that is almost

but not quite as complicated as first-order predicate logic (description
logics explicitly try to achieve a good trade-off between semantic
richness and machine tractability)

• ontologies modelled in those languages can be machine-interpretable:
the machine knows exactly what the model means and how the model
works logically, and can infer in a step-by-step fashion those
inferences a human would make

• But you need not worry about the formal logic behind those languages.
You just use the languages like OWL to create your ontologies, and
the OWL interpreter will do the right thing

Syntax, structure, semantics …

• Ontologies try to limit the possible formal models of interpretation
(semantics) of those vocabularies to the set of meanings you intend

• Ontologists want to shift some if that “semantic interpretative burden”
to machines and have them eventually mimic our sematics- that is,
understand what we mean-and so bring the machine up to the human,
not force the human to the machine level

• By machine semantic interpretation, we mean that by structuring (and
constraining) in a logical, axiomatic language (i.e., a knowledge
representation language) the symbols humans supply, the machine will
conclude via an interference process (again, built by the human
according to logical principles) roughly what a human would in
comparable circumstances

…and pragmatics

• Pragmatics sits above semantics and has to do with the
intent of the semantics and actual semantic usage

• Intelligent agents will have to deal with the pragmatics
(think of pragmatics as the extension of the semantics) of
ontologies

• Agent communication Language is based on speect act
theory, which is a pragmatics theory about human
discourse that states the human beings express their
utterances in certain ways that qualify as acts, and that they
have a specific intent for the meaning of those utterances

• Intelligent agents are sometimes formalized in a
framework called BDI for Belief, Desire, and Intent

Extension and Intension: E & I

• In the database and formal/natural language
worlds, the first type of knowledge is the intension
and the second the extension

• In the database world, a schema is the intentional
database, whereas the tuples of the database
constitute the extensional database

• In the formal/natural language worlds, a
description or specification is an intension,
whereas the actual objects (instances/individuals)
in the model (or world) for which the description
is true are in the extension

E & I in ICT
• Now the various technical communities will call the intension the

following: a taxonomy, a schema, a conceptual/object model, an
intensional semantics, an ontology. They will call extension the
following, respectively: leaves of the taxonomy, tuples, instances, the
extension, instances/individuals

• so overall, in an ontology you describe a set of structured, generic
properties that have a particular semantics (meaning). This is called a
model, meaning that it defines and represents information about some
aspects of the world that you (as the modeller) care to model

• If you are model-driven (meaning here ontology- or knowledge-
driven), just means you can change your model, regenerate the
implementation, or find the delta, and continue

Ontology mapping problem
• The Ontology or semantic mapping problem is an issue that affects

everything in information technology that must confront semantics
problems- that is, the problem of representing meaning for systems,
applications, databases, and document collections

• You must always consider mappings between whatever representation
of semantics you currently have (for system, application, database,
document collection) and some other representation of semantics
(within your own enterprise, within your community, across your
market, or the world)

• And you must consider semantic mappings within your set of
ontologies or whatever your semantic base representation is (if it’s not
ontologies, it’s probably hard-coded in the procedural code that
services your databases, and that means it’s really a problem)

Logic and logics…

• Ontologies provide two kinds of
knowledge:

• About the class or generic information that
describes and models the problem,
application, or, most usually, the domain

• About the instance information- that is, the
specific instantiation of that description
model

…with language…

• The representation is a means for both
expressing and using information

• The language used for knowledge
representation determines the kind of
reasoning that can take place on the
knowledge; the representation precedes
reasoning

…in science and the world
• Logic is sometimes supposed to underlie all of mathematics and science. Some

say that logic also underlies all of natural language. We will remain agnostic
on these pronouncements and will just say that logic usually and definitely
should underlie all models and modelling languages. Why?

• Because if we are serious about defining languages that can both represent the
knowledge of the world according to the perspective of the human being and
be machine-interpretable at semantic level (i.e. machines and their software
can interpret human semantics and knowledge at our human level of
understanding),

• then those knowledge representation languages and the knowledge they
represent must be supported by formally powerful tools only representable by
logic. Otherwise our knowledge- if represented in onlogically underpinned
ways- will remain arbitrarily interpretable by our software, the condition that
holds today, where the semantics of our data and systems are embedded
indecipherably and inextricably in our imperative programming code

Ontologies today
•Upper ontology
characterize very
basic commonsense
knowledge notions
that humans know so
well we typically
don’t know we know
them i.e. common
generic information
that spans all
ontologies

CYC Inc, http://www.cyc.com

• The middle ontology
represents knowledge that
spans domains and may
not be as general as the
knowledge of the upper
level

• Finally, the lower levels
represent ontologies at the
domain or subdomain
level

CYC open, http://www.cyc.com/cyc/opencyc

Knowledge-centric organization

• To establish enterprise- or community-wide
common semantics does not require a common
semantics or common model (a monolithic
ontology) across the enterprise or community,

• but instead a set (or probably more accurately, a
lattice) of integrated ontologies: upper, middle,
and domain (or subdomain) levels integrated
logically and thus not all in the same namespace
and all contexts not the same,

• and all applications not using the same portions of
the lattice of ontologies

Producing knowledge on the web

Knowledge usage example:
automated context handling with

RDF and OWL
• work of Harry Chen, Tim Finin, Anupam

Joshi: Semantic Web in the Context Broker
Architecture

• further automation of context needs data
that applications can understand and
manipulate

• http://pervasive.semanticweb.org/ by
UMBC

Communication example
• In a pervasive computing

environment, sensors are often
used to detect the presence of
people in a building

• For example, RFID (Radio
Frequency Identification)
sensors can detect the presence
of Smart Tags and conclude the
presence of people who wear
them, and Bluetooth sensors
can detect the proximity
presence of the Bluetooth-
enabled personal devices and
conclude the presence of the
device owners

COBRA ontology and architecture

•http://cobra.umbc.edu/

• building context
into the
applications and
environments

• based on extending
the web
information
archirecture

• using independent
agent
(applications!) for
information and
user exchange
needs

Use case: people presence sensors

• Using the CoBrA ontology, these people presence sensors can
effectively share people presence information with the broker in the
system and enable the broker to reason about the situational contexts of
these people. For example,

• 1. Whether a person is in the building,
• 2. Whether a person is in school today, and
• 3. Whether a person is not in a room (e.g., in hallway or in a cafeteria).
• Figure 5 shows an example of the person presence information that is

sent to the broker. Upon receiving this information, the broker will
reason about Harry Chen’s context. The following three examples
describe how the broker may reason about his contexts.

Example 1:To determine if Harry
Chen is in the ECS Building

• A1: Person("Harry Chen") has property
isCurrentlyIn("ECS210I").

• A2: For any person who has the property
isCurrentlyIn() with rdfs:range limited to
any Place that isPartOf Building, that
person must be a type of PersonInBuilding
(i.e., that person is in a building).

cont.
<cobra:Person rdf:about
="http://www.cs.umbc.edu/people/hchen4">
<cobra:isCurrentlyIn rdf:resource
="http://www.cs.umbc.edu/ECS210I"/>
</cobra:Person>
• Figure 5. When Harry Chen enters Room ECS210I and swipes his

RFID badge at the door, the RFID sensor informs the broker of his
presence in the room

• A3 <= A1+A2: Person("Harry Chen") is a type of the
PersonInBuilding class (i.e., Harry is currently in a building).
Furthermore, because Room("ECS210I") is-PartOf the
Building("ECS"), the broker can deduce Harry is currently in the ECS
building

Example 2: To determine if Harry
Chen is in school today

• B1: Person("Harry Chen") is in
Building("ECS"). (From Example 1: A3)

• B2: Building("ECS") isPartOf
UniversityCampus("UMBC")

• B3 <= B1+B2: Person("Harry Chen") is in
school today

Example 3: To determine if Harry
Chen is NOT in any rooms in the

ECS building.
• For example, he is talking to someone in the

hallway or has just left the meeting
• C1: Person("Harry Chen") is in Room("ECS210I")

&Building("ECS"). (From Example 1: A3)
• C2: If a person has property isCurrentlyIn with

value that is a type of OtherPlaceInBuilding, then
that person is not currently in a room. The class
OtherPlaceInBuilding rdfs:disjointWith the class
Room.

• C3 <= C1+C2: It is false that Person(“Harry
Chen”) is NOT in a room in the ECS building

Use case: a room agent

• In an intelligent space, room agents will play an important
role in maintaining and sharing room-specific contexts
with devices and agents. Let’s assume in each room, there
is a room agent maintains a set of specific contexts of the
room, for example,

• 1. Whether the room is currently hosting a meeting
• 2. The temperature, noise level, and light intensity level in

the room
• 3. The close/open states of the doors and windows in the

room
• 4. The type of devices/services that are available in the

room

cont.

• As the context of the room changes, the room agent will
inform the broker of the updated contexts. Figure 6 shows
an example of the information that is sent to the broker
from the room agent. From this information, the broker can
reason about additional context of the room and the context
of people in the room. These contexts may include: 1)
whether a person is currently in a meeting place, and 2)
whether a person is a meeting participant of a particular
meeting. The following two examples show how the
broker may reason about these contexts.

Example 5:
• To determine if Harry Chen is currently in a meeting place in the ECS

building.
• E1: Person(“Harry Chen”) is in Room(“ECS210I”) and Building(“ECS”)

(from Example 1: A3)
• E2: For any room that has the property hostsMeeting() with rdfs:range limited

to Meeting, the room must be a type of MeetingPlaceInBuilding (see cobra-
ont.owl).

• E3: Room(“ECS210I”) has the property hostMeeting(“me239”).
• E4 <= E2+E3: Room(“ECS210I”) is a type of Meeting-PlaceInBuilding
• E5: If a person is currently in a room, and that room is a type of

MeetingPlaceInBuilding, then that person is currently in a meeting place.
• E6 <= E1+E4+E5: Person(“Harry Chen”) is currently in a meeting place

which is in the ECS building

Example 6:

• To determine if Harry Chen is attending a meeting in
ECS210I (i.e., is Harry Chen a meeting participant).

• F1: Person(“Harry Chen”) is in Room(“ECS210I”) (From
Example 1: A3)

• F2: Room(“ECS210I”) is a type of MeetingPlaceIn-
Building. (From Example 5: E4)

• F3: If a person has the property isCurrentlyIn() with a
value that is a type of Room class, then that person is a
type of MeetingParticipant (i.e., that person is a meeting
participant).

• F4 <= F1+F2+F3: Person(“Harry Chen”) is a meeting
participant.

cont.

<cobra:Room rdf:about
=”http://www.cs.umbc.edu/ECS210I”/>
<cobra:hostsMeeting rdf:resource
=”http://www.ittalks.org/me293”/>
</cobra:Room>
• Figure. 6 A meeting is scheduled to take place in

ECS210I at 11:00am. Few minutes before the
meeting, the room agent of ECS210I informs the
broker that the room is about to host a meeting.

Use case: a person agent
• Person agents are specialized agents that provide personalized services for

individual users [9]. In intelligent spaces, these agents will keep track of users’
profiles, preferences, desires and intentions. For example, the person agent of a
speaker will automatically set up presentation slides when the speaker arrives
at the meeting and adjust room lighting when the presentation starts. In order
for the person agent to provide these services, it must acquire contextual
knowledge about the person from the broker. This knowledge may include the
following:

• 1. The role of the person in the meeting
• 2. The type of services that the person has access to
• 3. The type of the devices that the person carries
• 4. The type of non-computing objects the person’s vicinity (e.g., the type of

clothes the person wears & the type of objects that the person holds)
• 5. The time at which the person enter the room or joins the meeting
• 6. The identity of people whom the person is talking to

• One source from which person agents can acquire information about their
users is through user behavior monitoring. For example, Harry Chen is
scheduled to talk about ontology development at Wednesday’s meeting.
Days before the meeting, while Harry prepares his PowerPoint slides, his
personal agent learns his intention to give presentation at the meeting. On
the day of the meeting, as Harry enters the conference room, the personal
agent informs the broker of Harry’s intention and queries the broker for
Harry’s situational contexts.

• Figure 7 shows an example of the information that is sent to the broker
from the person agent. Upon receiving information from a person agent,
the broker will reason about the context of the user. Sometimes ontology
reasoning may involve uncertainty. For example, knowledge about the
context of a person may not always be completely accurate. The following
examples show how reasoning about the role of a person can involve
varied degree of certainty.

Example 7: To determine the role
of a person

• (e.g., is Harry Chen is the speaker of meeting “me239”)
• G1: Person(“Harry Chen”) is the same person as MeetingParticipant(“Harry Chen”)

(From Example 6: F4)
• G2: MeetingParticipant(“Harry Chen”) is associated with Meeting(“me239”) (From

Example 5 & Example 6)
• G3: Person(“Harry Chen”) has the intention to GiveSlideShowPresentation.(Informed

by Harry Chen’s person agent)
• G4: If a person is a type of MeetingParticipant and that person has owl:oneOf the

SpeakerIntention, then that person is LIKELY to be a speaker.
• G5 <= G1+G2+G3: Person(“Harry Chen”) is likely to be a speaker.
• Now, let’s assume the broker has some prior knowledge about the invitations that are

given to meeting
• participants. For example, from a talk announcement server (e.g., ITTalks.ORG [8]), the

broker learns that some person who is a type of TalkEventHost has invited Harry Chen
to the meeting “me239” (see Figure 8). This information can increase the certainty about
the role of Harry Chen being a speaker

cont.

• G6: If G5 is true, and the person who in question is invited
by some TalkEventHost, then that person MUST BE a
speaker.

• G7: Person(“Harry Chen”) is invited by a TalkEventHost.
• G8 <= G6+G7: Person(“Harry Chen”) must be a speaker.
• the next version of the CoBrA ontology has additional

concepts and vocabularies to model other detail aspects of
meetings and potential services in the environment

• a prototype an ontology reasoning component for building
a Context Broker. The prototype will exploit TRIPLE and
Jess

Goals to implement in SW
• 1. set detailed technical goals
• mark up your documents in XML
• expose your applications as web services
• build web service orchestration tools
• establish corporate registry
• build ontologies
• use tools that will help your production process
• integrate search tools
• use an enterprise portal as a catalyst for knowledge engineering
• 2. develop a plan with a workflow change strategy
• 3. set appropriate staff in place
• 4. set a schedule

Conclusions

• In a nutshell, think of RDF
as semantic glue to link
your XML-marked-up
documents to your
taxonomy (directory tree)
and ontology (formal class
model showing
relationships)

• a document will be XML
inside, RDF outside, filed
in a branch of the
taxonomy and related to
classes in the ontology

References
1. Semantic web

http://www.w3.org/2001/sw/
2. M. C. Daconta, L. J. Obrst, K.

T. Smith: The Semantic Web: A
guide to the future of XML,
Web Services and Knowledge
Management, John Wiley, 2003

3. Microsoft .NET,
http://www.microsoft.com/net/

4. Harry Chen, Tim Finin,
Anupam Joshi: Semantic Web
in the Context Broker
Architecture,
http://cobra.umbc.edu/

5. SW Working Symposium,
http://www.semanticweb.org/SWWS/, 2001

…

• (Sampath Kumar (FH-Kiel): Zone based mobile
communication using web based portals, project
work at Technobothnia, 2004)

• Kontti project,
http://akseli.tekes.fi/Resource.phx/tivi/nets/z-
07335329.htx

• K. Salmenjoki and T. Welzer :
Using Web Services and Semantic Web for
Producing Intelligent Context-Aware Services,
KES2004

